
Summary

Antimycobacterial effects of thiosemicarbazones
were discovered in the late 1940s. The best known
representative of these compounds is thioacetazone that
has been used in the therapy of tuberculosis since the
turn of the 1940s and 1950s. At present, it is used only
rarely since it exhibits severe side effects. This
paper deals with the antimycobacterial effects of
thiosemicarbazones and N,N-dimethylthiosemicarbazo-
nes derived from 5-alkyl-2-acetylpyrazines. Some of
these compounds displayed high inhibition of the growth
of Mycobacterium tuberculosis H37Rv, but were
excluded from the in vivo studies due to their cytotoxic
effects. Nonetheless, they can be used as model
compounds for studying the mechanisms of
antimycobacterial action of thiosemicarbazones.
Keywords: tuberculosis • thiosemicarbazones of
acetylpyrazines • antimycobacterial effects

Souhrn

Antimykobakteriální úãinky thiosemikarbazonÛ byly
objeveny ve druhé polovinû ãtyfiicát˘ch let 20. století.
Nejznámûj‰ím zástupcem tûchto slouãenin je thioaceta-
zon pouÏívan˘ v terapii tuberkulózy od pfielomu ãtyfiicá-
t˘ch a padesát˘ch let. Pro závaÏné vedlej‰í úãinky se
dnes pouÏívá jen málokdy. Tato práce pojednává
o antimykobakteriálních úãincích thiosemikarbazonÛ
a N,N-dimethylthiosemikarbazonÛ odvozen˘ch od
5-alkyl-2-acetylpyrazinÛ. Nûkteré z tûchto slouãenin
v˘znamnû inhibovaly rÛst Mycobacterium tuberculosis
H37Rv, ale pro svoji toxicitu nepostoupily do in vivo stu-
dií. Nicménû mohou b˘t vyuÏity jako modelové slouãe-
niny pro studium mechanismÛ antimykobakteriálních
úãinkÛ thiosemikarbazonÛ.
Klíãová slova: tuberkulóza • thiosemikarbazony acetyl-
pyrazinÛ • antimykobakteriální úãinky

Introduction

Tuberculosis is a very old disease. It is thought that the
progenitor of the Mycobacterium tuberculosis complex
arouse from a soil bacterium and that the human bacillus
may have been derived from the bovine form following
domestication of cattle approx. 10 000 years ago1– 3). Over
the past 100 years, tuberculosis (TB) has probably killed
100 million people4). According to WHO Global
Tuberculosis Report 2012, there were an estimated 8.7
million new cases of tuberculosis and 1.4 million died
from TB in 2011, despite the availability of treatment that
will cure most cases of TB5). Increased incidence of
infections caused by the M. tuberculosis and M. avium
complex in HIV-infected individuals6, 7) as well as
evolution of multidrug-resistant tuberculosis (MDR-TB)
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Fig. 1. Structures of rifampicin (1) and bedaquiline (2)
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aND = not determined

and extensively drug-resistant tuberculosis (XDR-TB)
present a serious problem8– 11). Moreover, the last first-line
antimycobacterial agent – rifampicin 1 (RIFADIN®, Fig.
1) – was introduced more than 40 years ago12). In the end
of 2012, bedaquiline 2 (SIRTURO®, Fig. 1) was approved
by the FDA through an accelerated approval process only
for patients who have multidrug-resistant TB, which can
require up to 2 years of treatment. Phase III in MDR-TB
patients are currently under way and may take 5 years.
Only then the full potential of bedaquiline can be
evaluated13). Thus, more-effective vaccines, diagnostic
tools, drugs and therapeutic regimes are urgently
needed14–16).

Antimycobacterial effects of thiosemicarbazones were
discovered in the 1940s17) and resulted in a rapid
introduction of thioacetazon (TAZ) 3 (CONTEBEN®,

Fig. 2) into the therapy of tuberculosis19,

20). In spite of frequent side effects, TAZ
may still be considered for the treatment
of new cases if there is a lack of other
antituberculous drugs and for the
management of MDR-TB20). Several
analogous thiosemicarbazones 4–5
(Fig. 2) have recently been studied21–24).

The unsubstituted acetylpyrazine thio -
semicarbazone 6a (Fig. 3) has been
known since 195225). Almost 50 years
later, its congeners modified in the
thiosemicarbazide part of the molecule
6b–6s and 7a–7g (Fig. 3) were studied as
potential antituberculous drugs. Based on
in vitro results, compound 6h was chosen

for further testing on mice. Its potency was the same or
even better than that of isoniazid and ethambutol. The best
results were obtained with the dose of 5 mg/kg. The acute
toxicity value (LD50) after per os administration was
90 mg/kg, and only small organic changes were
observed26). 

Within our studies aimed at finding new antimicrobial
drugs, we have prepared and evaluated thiosemicar -
bazones 8a–8h and N,N-dimethylthiosemicarbazones
9a–9h alkylated on the pyrazine ring. The compounds
exhibited iron chelating, antitumor and antifungal
activities27). Thiosemicarbazones 8i and 9i derived from
acetophenone were prepared for comparison (Fig 4). 

The present paper deals with antimycobacterial effects
of these compounds.
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Fig. 2. Structures of thioacetazone (3), SRI-224 (4) and SRI-286 (5)v

Table 1. 5-alkylacetylpyrazine thiosemicarbazones and their antimycobacterial effects

Inhibition of M. tuberculosis H37Rv

Compd. X R1 % inhibition MIC IC50 SI
at 6.25 μg/ml (μg/ml) (μg/ml) 

8a N H NDa NDa NDa NDa 

8b N propyl 95 6.25 1.28 0.20 

8c N isopropyl 88 NDa NDa NDa 

8d N butyl 98 0.39 0.43 1.10 

8e N isobutyl 96 6.25 0.63 0.10 

8f N tert-butyl 95 6.25 0.42 0.07 

8g N pentyl 95 3.13 0.36 0.12 

8h N hexyl 93 3.13 0.10 0.03

8i C H NDa NDa NDa NDa

9a N H 55 NDa NDa NDa

9b N propyl 6 NDa NDa NDa

9c N isopropyl 24 NDa NDa NDa

9d N butyl 39 NDa NDa NDa

9e N isobutyl 47 NDa NDa NDa

9f N tert-butyl 51 NDa NDa NDa

9g N pentyl 100 1.56 0.20 0.13

9h N hexyl 100 3.13 0.17 0.05

9i C H 24 NDa NDa NDa

isoniazid – – NDa 0.025–0.05 < 1000 < 40 000

rifampicin – – 98 0.015–0.125 < 100 < 800
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Fig. 3. Acetylpyrazine thiosemicarbazones modified in the thiosemicarbazide moiety
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Fig. 5. Structures of ethioamide(10) and thiocarlide (11)

Fig. 4. Structures of the studied compounds

Experimental part

Primary screening of all compounds was conducted
at 6.25 μg/ml against Mycobacterium tuberculosis
H37Rv (ATCC 27294) in the BACTEC 12B medium
using the Microplate Alamar Blue Assay (MABA)28).
Compounds exhibiting fluorescence were tested in the
BACTEC 460-radiometric system28). Compounds
demonstrating at least 90% inhibition in the primary
screen were re-tested at lower concentrations
against M. tuberculosis H37Rv to determine the actual
minimum inhibitory concentration (MIC) in the
MABA. The MIC is defined as the lowest
concentration effecting a reduction in fluorescence of
90% relative to controls.

The compounds that exhibited promising
antimycobacterial activity were tested for cytotoxicity
(IC50) in VERO cells at concentrations less than or
equal to 10 times the MIC for M. tuberculosis H37Rv.
After 72-h exposure, viability was assessed on the basis
of cellular conversion of 1-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl tetrazolium (MTT) into a formazan
product using the Promega CellTiter 96 Non-
-radioactive Cell Proliferation Assay.

The selectivity index (SI) was then calculated as
the ratio of the measured IC50 in VERO cells to the
MIC described above. Generally, requirements for
moving compound into in vivo testing include: MIC
≤ 6.25 g.ml-1 and an SI ≥ 10.

Fig. 6. Structures of TAZ-sulfenic acid (12), TAZ-carbodiimide (13)
and TAZ-sulfinic acid (14) 
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The results of antimycobacterial and cytotoxicy assays
are summarized in Table 1.

Results and discussion

Thiosemicarbazones 8a–8h exhibited high inhibition
of M. tuberculosis. The lowest MIC (0.39 μg/ml) was
observed with (2E)-2-[1-(5-butylpyrazin-2-yl)ethylidene]
hydrazinecarbo thioamide 8d. N,N-dimethyl thio -
semicarbazones were less potent except for 9g and 9h
which displayed potency similar to that of thio s em i -
carbazone 8d. It indicates that the character of the alkyl is
important. In both series longer non-branched alkyls seem
to be preferable for the antimycobacterial activity. This is
in agreement with a recent study performed with ring
substituted benzaldehyde thiosemicarbazones29).
Regarding lipophilicity, N,N-αdimethylation results in
approx. a twofold increase of log K values determined
experimentally by means of HPLC27). All compounds with
MIC ≤ 3.13 μg/ml have log K in the range 1.02–1.72 for
thiosemicarbazone series and 2.20–2.62 for N,N-
-dimethylthiosemicarbazones. 

Due to high cytotoxicity (low SI) none of the studied
compounds was chosen for in vivo testing. Nonetheless,
they can serve as tools to study mechanisms of action of
thiosemicarbazones. 

It is known that TAZ is a prodrug. In vivo it undergoes
oxidative activation by flavin monooxygenase EthA, the
enzyme that bioactivates also ethionamide 10
(TRECATOR®) and tiocarlide 11 (ISOXYL®) (Fig. 5)30, 31).

TAZ is also activated by human monooxidases FMO,
FMO2.1 and FMO3 which may decrease the availability
of the prodrug to the mycobacteria. The resulting
metabolites – sulfenic acid 12 and carbodiimide 13, but
not sulfinic acid 14 (Fig. 6) – react with glutathione
(GSH) and may contribute the cytotoxicity of TAZ30–32). 

Mycobacteria do not produce GSH but make mycothiol
(MSH) which is essential for the growth of M.
tuberculosis. MSH, like GSH, protects the cell against
oxidative damage and electrophilic toxins. Metabolites of
TZA that react with GSH should react with MSH in
a similar manner thus lowering MSH concentration within
the mycobacterial cell and sensitizing it to oxidative
damage30). 

It has also be found that TAZ inhibits cyclopropanation
of cell wall mycolic acids in mycobacteria by inhibition of
the enzymes belonging to CMAS (Cyclopropanating
Mycolic Acids Synthases) family33, 34). A computational
analysis showed that TAZ fits well at the active site of
cyclopropane mycolic acid synthases CmaA1and CmaA2.
Moreover, TAZ metabolites – TAZ-carbodiimide 13 and
TAZ-sulfinic acid 14 (Fig. 5) – may also bind at the active
site by NH-π interactions analogous to TAZ. If these
hypotheses are validated experimentally, new knowledge
about the TAZ binding site will be obtained35). 

Other enzymes of CMAS family are also inhibited by
TAZ even at extremely low doses with an exception of
methoxy mycolic acid synthase MmaA4. Mutations in the
mmaA4 gene make the mycobacteria resistant to TAZ.
According to Alahari et al., activation of TZA by EthA
itself is not sufficient, and TAZ must be further activated

by MmaA4 to get the active form capable to induce
growth arrest of mycobacteria34). However, this
hypothesis is not supported by Grzegorzewicz et al.36). 

Many other enzymes, especially those belonging to the
fatty acid synthase (FAS ) system, have recently been
studied as new drug targets37–39). M. tuberculosis possesses
not only FAS-II monofunctional enzymes (specific
for prokaryotes and organelles), but also mega-enzyme
FAS-I (a multifunctional enzyme found mainly in
eukaryotes). These two systems are engaged in the
synthesis of normal chain-length fatty acids together with
specific long-chain mycolic acids40). Moreover, M.
tuberculosis encodes more that 60 adenylating enzymes
(AE) that are essential for virulence. Development of
potent and selective AE inhibitors represents another
strategy in the fight against pathogenic mycobacteria41–43).
Let’s hope that all these efforts will finally lead to more
potent and safe antituberculous agents.
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