
Souhrn

Farmakogenetika je rychle se rozvíjející vûdní obor sli-
bující individualizaci léãby popsáním geneticky poly-
morfních aspektÛ farmakodynamiky (receptory a dal‰í
cíle léãiv) i farmakokinetiky (pfiena‰eãe, biotransformaã-
ní enzymy). Ke stanovení aktivity enzymÛ vyuÏívá jed-
nak nepfiímou metodu genotypizace, kdy je aktivita
odhadována z genetické v˘bavy jedince, popfi. pfiímo
podáním substrátu daného enzymu a stanovením hladin
parentní látky a pfiíslu‰ného metabolitu, jehoÏ vznik
enzym katalyzuje – fenotypizace. Tento pfiehledov˘ ãlá-
nek se zab˘vá v˘znamnûj‰ími enzymy podílejícími se na
metabolismu léãiv, jejich polymorfismy a metodami
jejich fenotypizace, pfiiãemÏ zvlá‰tní zfietel klade na ana-
lytické metody popsané v odborné literatufie, jichÏ je
moÏno vyuÏít ke stanovení metabolického pomûru
parentní látka/metabolit. 
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Summary

Pharmacogenetics is a rapidly developing field of
science promising individualization of treatment through
determination of genetic polymorphism in
pharmacodynamics (receptors and other drug targets)
and pharmacokinetics (carriers, metabolic enzymes).
Enzyme activity may be predicted using genotyping or
directly phenotyped – after administration of a probe
substrate. This review article deals with some important
metabolic enzyme polymorphisms and their phenotyping
methods. Special consideration is given to the analytical
methods described in the literature, which can be used to
determine the metabolic rate.
Keywords: pharmacogenetics • cytochrome P450 •
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Úvod

Farmakogenetika je pomûrnû nov˘m v˘zkumn˘m
odvûtvím pfiedev‰ím klinické farmakologie. Aãkoliv její
kofieny sahají aÏ do padesát˘ch let 20. století k objevÛm
deficitu butyrylcholinesterasy, senzitivity k primachinu
a obecnû známé pomalé acetylace isoniazidu, tj. nálezy
podkládající vliv genetiky na lékovou odpovûì, vût‰ího
zájmu se farmakogenetice dostalo aÏ s rozvojem mole-
kulární biologie a projektu Human Genom Project1). Ten-
to rozvoj umoÏnil nalezení vztahu polymorfismu genÛ
s interindividuální variabilitou lékové odpovûdí, resp.
jeho hlub‰í pochopení.

Vliv genetické v˘bavy jedince na lékovou odpovûì
mÛÏe probíhat na dvou úrovních: farmakokinetické a far-
makodynamické. Samotná farmakokinetika pak mÛÏe
b˘t ovlivnûna jednak v oblasti biotransformace léãiv, tj.
genov˘ polymorfismus u metabolick˘ch enzymÛ typu
oxidas se smí‰enou funkcí (P450), thiopurinmetyltran-
sferasy (TPMT), jiÏ zmínûné butyrylcholinesterasy a dal-
‰ích, popfi. v oblasti jejich transportu, kdy je ovlivnûna
exprese transportních proteinÛ typu p-glykoproteinu,
pfiena‰eãÛ, iontov˘ch kanálÛ apod. Farmakodynamika je
pak ovlivnûna genetick˘m polymorfismem pfiíslu‰n˘ch
receptorÛ (opioidních, GABA atd.), nebo opût enzymÛ
(topoizomerasa I, target cytostatika irinotekanu)2). Kom-
binací znalostí z obou tûchto oblastí by bylo moÏné zvo-
lit pro jednotlivce vhodné léãivo s potfiebn˘m dávková-
ním, tj. individualizovat léãbu.

Vymezení pojmÛ

V literatufie se mÛÏeme setkat s definicí farmakogene-
tiky jakoÏto vûdy sledující vliv jednoho genu na pÛsobe-
ní léãiv a farmakogenomiky jakoÏto aplikaci farmakoge-
netiky na cel˘ genom, nicménû v naprosté vût‰inû
odborn˘ch ãlánkÛ jsou tyto pojmy pouÏívány zamûnitel-
nû, popfi. je pouÏívána farmakogenetika pro oba pfiípady.
Této praxe se bude drÏet i tato re‰er‰e.

Genetick˘ polymorfismus je definován jako v˘skyt
dvou ãi více variant (fenotypÛ, alel) v populaci v signifi-
kantní frekvenci, které jej odli‰uje od náhodné mutace.
Aby se pfiede‰lo nejasnostem, je zvolena jako „signifi-
kantní frekvence“ arbitrární mez 1 %. Pro pfiedstavu,
zrzavé vlasy mají frekvenci v populaci právû 1–2 %.

Jak vypl˘vá z pfiedchozího textu, genetickému poly-
morfismu dávají vzniknout pfiedev‰ím bodové mutace –
jedno nukleotidov˘ polymorfismus (single nucleotide
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polymorphism – SNP). K tomuto mÛÏe dojít v zásadû
tfiemi mechanismy: substitucí, delecí ãi inzercí nukleoti-
du v fietûzci DNA. Pokud se tak stane v rámci intronu,
aãkoliv nemusí dojít k zámûnû AK ve vzniklém proteinu
vzhledem k degeneraci genetického kódu (tichá mutace),
ve vût‰inû pfiípadÛ dochází k ovlivnûní koneãného pro-
duktu daného genu. Napfiíklad SNP309 v genu pro muri-
ne double minute 2 (MDM2) zpÛsobuje posílení vazby
transkripãního faktoru SP1 k MDM2 promotoru, a tedy
vût‰í expresi MDM2, coÏ vede k silnûj‰í negativní regu-
laci tumor supresor proteinu p53, fenotypem pak je zfiej-
mû vût‰í náchylnost k nádorov˘m onemocnûním3).
Pokud k SNP dochází v exonu, nejãastûji je ovlivnûna
funkãnost v˘sledného proteinu, napfi. sníÏená katalytická
aktivita enzymu v dÛsledku konformaãní zmûny okolí
vazebné domény. Pfii deleci nebo inzerci nukleotidu
dochází k posunu ãtecího rámce a pokraãující sekvence
jiÏ nekóduje funkãní produkt. 

Polymorfismus biotransformaãních enzymÛ vede ke
ãtyfiem základním fenotypÛm, z nichÏ klinicky v˘znam-
nû odli‰né od bûÏné populace jsou pfiedev‰ím dva z nich:
pomal˘ metabolizátor (PM) a ultrarychl˘ metabolizátor
(UM). Pomal˘ metabolizátor je homozygot pro funkãnû
defektní alelu, zatímco ultrarychl˘ metabolizátor má
funkãní alely duplikované ãi multiplikované, nebo má
expresi enzymu zv˘‰enou mutacemi/polymorfismy
v regulaãních oblastech genu. Tfietím fenotypem je inter-
mediární metabolizátor (IM) s aktivitou enzymu mezi
PM a posledním fenotypem, homozygotem pro funkãní
nepozmûnûné (wild-type) alely, extensivním metabolizá-
torem (EM).

Metody farmakogenetiky

K zafiazení daného jednotlivce do pfiíslu‰né skupiny
metabolizátorÛ a s tím související individualizaci dávko-
vání se v klinické praxi vyuÏívají dvû metodiky: genoty-
pizace a fenotypizace. Obecnû lze fiíci, Ïe fenotypizace
odráÏí aktuální aktivitu enzymu, která se mÛÏe mûnit
i vlivem jin˘ch faktorÛ neÏ pouze genetick˘m podkla-
dem (vûk, medikace, v˘Ïiva a dal‰í), naproti tomu je nut-
no do tûla zavádût exogenní látku, coÏ dále mÛÏe zatûÏo-
vat organismus (toto neplatí u krevních enzymÛ jako
TPMT, butyrylcholinesterasa, jejichÏ fenotypizaci je
moÏno provádût in vitro v odebrané krvi). Ne vÏdy je
moÏné vÛbec rozhodnout, zda je lep‰í v daném pfiípadû
fenotypizace ãi genotypizace. Napfi. u azathioprinu pro
fenotypizaci hovofií fakt, Ïe i u homozygotÛ se aktivita
TPMT mÛÏe li‰it aÏ ãtyfinásobnû a v rasovû rÛznorodé
populaci genotypizace nemusí odhalit nové popfi. netes-
tované mutace. Naproti tomu pfiede‰lá krevní transfuze
mÛÏe vést k ‰patnému urãení fenotypu a dal‰í komplika-
cí je fakt, Ïe aktivita TPMT se zvy‰uje, pfiedev‰ím u hete-
rozygotÛ, s podáváním thiopurinov˘ch léãiv a tedy
prvotnû stanovená aktivita se mÛÏe zmûnit po zahájení
léãby1). Dal‰í nev˘hodou fenotypizace je fakt, Ïe není
schopna odli‰it UM od EM.

Genotypizace

Tato metodika je zaloÏena na stanovení genotypu
a následném odhadu aktivity pfiíslu‰ného enzymu nepfií-

mo predikcí fenotypu. Ke stanovení samotného genotypu
se vyuÏívají metody molekulární biologie, po izolaci leu-
kocytární DNA se provádí amplifikace pfiíslu‰ného úse-
ku DNA pomocí PCR a vhodn˘ch primerÛ. Následuje
anal˘za jednotliv˘ch alel, aÈ uÏ pomocí RFLP – restricti-
on fragment lenght polymorphism zaloÏené na rozdílné
délce restrikãních fragmentÛ, SSCP – single strand con-
formation polymorphism zaloÏené na rozdílné konfor-
maci, sekundární struktufie fietûzce DNA, jíÏ lze rozli‰it
i zámûna jediné báze4), real-time PCR ãi jin˘ch metod.
Genotypizaci se vûnuje fiada ãlánkÛ, proto zde bude
pojednáno pfiedev‰ím o fenotypizaci.

Fenotypizace

Princip této metodiky spoãívá v podání vhodné exo-
genní (modelové) látky jedinci, u níÏ se následnû stanoví
farmakokinetické parametry. Vhodnou látkou se rozumí
taková substance, která se metabolizuje pouze pfiíslu‰-
n˘m enzymem, jehoÏ aktivitu si pfiejeme stanovit. Toho
v‰ak lze v praxi dosáhnout jen stûÏí a je nutné se tedy
spokojit alespoÀ s pfievaÏujícím metabolismem pfiíslu‰-
n˘m enzymem. Optimální modelová látka pak také není
toxická a samozfiejmû neinterferuje s dal‰í léãbou. Jak uÏ
bylo fieãeno, takové stanovení odráÏí nejen genetickou
v˘bavu jedince, ale i fiadu dal‰ích fyziologick˘ch, popfi.
patologick˘ch jevÛ, interakcí s jin˘mi xenobiotiky (enzy-
mové indukce, inhibice). Odraz tûchto negenetick˘ch
vlivÛ u fenotypizace je v‰ak vût‰inou s v˘hodou, jelikoÏ
stejn˘m vlivÛm pak bude podléhat i léãivá látka.

Cytochrom P450

Nadrodina enzymÛ cytochrom P450 (P450) zastfie‰uje
oxidasy se smí‰enou funkcí, které se dále dûlí do rodin
(40 % shoda v AK sekvenci) pfiifiazením arabského ãísla
ke zkratce CYP a do podrodin (55% shoda v AK sekven-
ci) pfiifiazením písmena. Jednotlivé enzymy se pak ozna-
ãují koneãn˘m pfiidáním dal‰ího arabského ãísla, pro pfií-
klad: CYP2D6.

Je známo pfies 11 500 jednotliv˘ch enzymÛ, u lidí bylo
popsáno 18 rodin a 43 podrodin P450 enzymÛ5). Pro
metabolismus léãiv jsou v˘znamné první tfii rodiny:
CYP1, CYP2 a CYP3, ostatní se podílejí na metabolismu
endogenních látek6). AÏ 80 % léãiv podstupuje oxidaãní
reakce katalyzované P4507), z toho 50 % pfiipadá na pod-
rodinu CYP3A48), na CYP2D6 a CYP2C9 pfiipadá 25,
resp. 20 %9, 10).

CYP2D6

Tímto enzymem je metabolizována fiada klinicky
dÛleÏit˘ch léãiv, ß-blokátory, antidepresiva, neurolepti-
ka, antiarytmika a opiody, obecnû vzato jsou to lipofil-
ní báze1). Chemicky se jedná o polypeptid o 497 AK,
tvofiící 4 % z celkového mnoÏství enzymÛ P450 v ját-
rech11).

Frekvence CYP2D6*3, CYP2D6*4, CYP2D6*5,
CYP2D6*6, tedy hlavních variantních alel genu pro
CYP2D6, v ãeské populaci byla stanovena na 1,1 %,
22,9 %, 3,1 %, resp. 0,2 % a duplikace genu pro
CYP2D6 byla nalezena u 3,1 % subjektÛ12).
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K fenotypizaci je v klinické praxi pouÏíván spartein,
debrisochin, tramadol13, 14), metoprolol15), dextrometor-
fan16), navíc desipramin, atemoxetin jsou doporuãeny
FDA jako substráty CYP2D6 k in vivo zkou‰kám17).

Dextrometorfan je opioidní agonista nejãastûji pouÏí-
van˘ proti ka‰li a bolesti. K fenotypizaci se ukázala jako
nejlep‰í dávka 30 mg ve formû bromidové soli18), tedy
dostateãnû nízká dávka, která by u dospûlého ãlovûka
nemûla zpÛsobit neÏádoucí úãinky. Ze v‰ech modelo-
v˘ch látek zmínûn˘ch v˘‰e je zfiejmû nejpouÏívanûj‰í
díky sv˘m mírn˘m neÏádoucím úãinkÛm, má také nej-
vhodnûj‰í vlastnosti k fenotypizaci CYP2D6: je dostup-
n˘ na trhu, má prokázanou in vitro specificitu pouÏíva-
ného metabolického kroku, mûfiené koncentrace
metabolitu korelují s aktivitou a obsahem CYP2D6
v mikrozomech lidsk˘ch jater, projevují se rozdíly
v metabolismu pfii onemocnûní jater a pfii uÏívaní inhibi-
torÛ CYP2D619).

K fenotypizaci je moÏné pouÏít stanovení metabolic-
kého pomûru dextrometorfan/dextrorfan v moãi, ta se
sbírá nejãastûji bûhem 8 hodin po podání dextrometorfa-
nu20–22). Tato doba dobfie koreluje se vzorkovacím inter-
valem 0–24 h (rs = 0,967; p < 0,0001) a má v˘hodu krat-
‰ího ãasu, a tedy i men‰í pravdûpodobnost chyby ve
vzorkování23).

Dextrorfan se konjuguje s glukuronovou kyselinou,
proto je nutné pfied samotné stanovení vloÏit hydroly-
tick˘ krok (glukuronyltransferasa sama podléhá gene-
tickému polymorfismu). Ten spoãívá nejãastûji v enzy-
matické hydrol˘ze reakcí s ß-glukuronidasou24), novûji
pak také v chemické hydrol˘ze reakcí s kyselinou chlo-
rovodíkovou, jejíÏ v˘hodou je men‰í nákladnost, vût‰í
spolehlivost a rychlej‰í provedení (1 h oproti 18 aÏ
24 h)25).

Dal‰í moÏností stanovení fenotypu je v˘poãet metabo-
lického pomûru dextrometorfan/dextrorfan z koncentrací
v plazmû z jednoho vzorkovacího ãasu: napfi. 1 h vzorek
rozli‰il mezi PM a EM, a to s men‰í variabilitou neÏ
metabolick˘ pomûr vypoãten˘ z moãi26). Malá korelace
mezi hladinami v moãi a v plazmû v‰ak také mÛÏe pou-
kazovat na moÏn˘ bias vznikl˘ brzk˘m odbûrem vzor-
ku19). Dobrou korelaci vykazují vzorky odebrané
v ãasech 2, 3, 4, 5 a 8 h po ingesci dextrometorfanu21, 27),
pfiiãemÏ napfiíklad 3 h vzorek vykazuje korelaci k meta-
bolickému pomûru zaloÏenému na AUC 0–12 h 0,999
(p = 0,000; n = 6)28).

Zvlá‰È pro pacienty s poruchou ledvin byla zkoumána
moÏnost stanovení fenotypu v˘poãtem metabolického
pomûru z koncentrací ve slinách. Nejmen‰í intraindivi-
duální variabilitu vykázaly vzorkovací ãasy 2 h a 3 h po
ingesci dextrometorfanu. Vzorkovací ãas 3 h navíc dob-
fie koreloval s moãí odebíranou v intervalu 0–8 h (r =
0,704; p < 0,001; n = 62)29), z hlediska opakovatelnosti
v‰ak vykazoval ‰patné v˘sledky, v tomto smûru si vedl
lépe vzorkovací ãas 6 h21).

Metody stanovení shrnuje tabulka 1.
Nejnovûj‰ím zkouman˘m zpÛsobem k urãení feno-

typu je pak dechov˘ test po podání [13C]-dextrometor-
fanu. V klinickém pokusu provedeném Leederem et al.
bylo 30 dobrovolníkÛm podáno 0,5 mg/kg dextrome-
torfanu a mûfieno obohacení 13CO2 infraãervenou
spektroskopií ve vydechovaném vzduchu bûhem 4 h

po podání, vztaÏené k obsahu 13CO2 ve vydechovaném
vzduchu pfied podáním (DOB, delta over baseline).
V˘sledky byly srovnány s metabolick˘mi pomûry
vypoãten˘mi z koncentrací v moãi. Pfii pouÏití jedno-
ho ãasového bodu 40 min po podání a definicí PM
jako subjekty s DOB < 0,5 mûla metoda 100% senzi-
tivitu, 95% specificitu a 95% pfiesnost, pfiiãemÏ jedno-
ho IM nesprávnû urãila jako PM. Vzhledem k tûmto
v˘sledkÛm metoda slibuje rychlé, neinvazivní stano-
vení fenotypu CYP2D6, nicménû je nutn˘ dal‰í
v˘voj45).

Ostatní látky k fenotypizaci CYP2D6 nevykazují
jednu nebo více vlastností k tomuto úãelu potfiebn˘ch.
Debrisochin jiÏ není k dostání na trhu a nemá proká-
zanou in vitro specificitu metabolické pfiemûny pouÏi-
té k fenotypizaci, spartein jiÏ také není na trhu
a nejsou k dispozici data, zda se mûní metabolismus
u subjektÛ s onemocnûním jater. Tramadol nemá pro-
kázanou in vitro specificitu metabolické pfiemûny
a tato pfiemûna dostateãnû nepfievaÏuje nad jin˘mi
metabolick˘mi kroky, jimÏ tramadol podléhá, tímto
neduhem pak trpí i metoprolol, navíc k nûmu nejsou
data prokazující odli‰n˘ metabolismus u lidí s one-
mocnûním jater19).

CYP2C9

Tímto enzymem jsou metabolizována kumarinová
antikoagulancia (warfarin, acenokumarol), deriváty sul-
fonylmoãoviny (tolbutamid, glyburid, glimeprid), anta-
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Tab. 1. Analytické metody k fenotypizaci CYP2D6 s pouÏitím
dextrometorfanu

Metoda-detekce Matrice LOQp
ng/ml

LOQm
ng/ml Reference

HPLC-FD moã 1 1 21)

HPLC-UV moã 110–220 110–220 30)

GC-MS moã 100 100 31)

GC-MS moã 10 10 32)

ELISA moã 10 10 32)

HPLC-UV moã 1000 100 33)

LC-MS/MS moã 1 60 34)

HPLC-FD moã 50 50 35)

HPLC-FD plazma 1 1 21)

HPLC-FD plazma 2 2 35)

HPLC-FD plazma 0,5 5 36)

HPLC-FD plazma 0,271 0,257 37)

LC-MS/MS plazma 0,05 0,05 38)

GC-MS/MS plazma 0,03 0,05 39)

HPLC-FD plazma 10 10 40)

HPLC-FD plazma 20 20 41)

HPLC-FD plazma 5 5 42)

CE plazma 1 1 43)

HPLC-FD sliny 1 1 21)

GC-MS sliny 10 10 32)

ELISA sliny 10 10 32)

LC-MS/MS sliny 0,271 0,257 44)
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gonisté AT II (losartan, irbesartan), nesteroidní protizá-
nûtlivá léãiva (diklofenak, ibuprofen, celekoxib), feny-
toin a jiné.

Jedná se o polypeptid o 490 AK, tvofií asi 20 %
v‰ech P450 enzymÛ v játrech46) a zodpovídá za stejné
pomûrné mnoÏství reakcí katalyzovan˘ch P45047).

Frekvence hlavních variantních alel, tj. CYP2C9*2
a CYP2C9*3, v ãeské populaci byla stanovena na
12,2 %, resp. 5,9 %48).

K fenotypizaci se nejãastûji pouÏívá tolbutamid49, 50),
pro sníÏení rizika hypoglykémie je moÏné podat
p. o. glukosu51, 52). Metabolick˘ pomûr vypoãten˘ na
základû koncentrací tolbutamidu a jeho dvou hlavních
metabolitÛ hydroxytolbutamidu a karboxytolbutamidu
v moãi odebírané v intervalu 6–12 h po ingesci signifi-
kantnû predikoval clearence u zdrav˘ch subjektÛ53). Pfies-
toÏe parentní látka se vyskytuje v moãi v pomûru k meta-
bolitÛm v nízké koncentraci, coÏ sniÏuje její predikãní
schopnosti, zÛstává tolbutamid doporuãovanou látkou
pro stanovení fenotypu CYP2C9, dal‰í navrhované látky
(losartan, flurbiprofen) neprokázaly tak dobr˘ vztah
mezi genotypem a jejich metabolismem (r2 = 0,42, resp.
0,53 vs. 0,64 pro tolbutamid)54). 

Metody stanovení shrnuje tabulka 2.

CYP2C19

Tento enzym je dÛleÏit˘ v metabolismu inhibitorÛ pro-
tonové pumpy (omeprazol, lansoprazol), benzodiazepinÛ
(diazepam, flunitrazepam), tricyklick˘ch antidepresiv
(amitryptalin, imipramin), SSRI (fluoxetin, citalopram),
barbiturátÛ (fenobarbital, hexobarbital), proguanilu,
a dal‰ích (chloramfenikol, indometacin). 

K fenotypizaci se velmi ãasto pouÏívá stanovení
pomûru R-/S- mefenytoinu59–63). Kromû toho byly pou-
Ïity i dal‰í látky jako lansoprazol, omeprazol a progua-
nil28, 64–68). Lansoprazol v‰ak nedokázal zcela rozli‰it
mezi jednotliv˘mi fenotypy64), proguanil vykázal shodu
genotypu s fenotypem jen na základû probit anal˘zy
pomûrÛ proguanil/chlorofenylproguanid a proguanil/
/(cykloguanil + chlorofenylproguanid), ale ne progua-
nil/cykloguanil67), podobnû omeprazol vykázal shodu
genotypu s fenotypem jen u zdrav˘ch, mlad˘ch dobro-
volníkÛ, zatímco nûkteré subjekty nad 65 let, popfi.
s poruchou jater oznaãil jako PM, pfiestoÏe se jednalo
o genotyp EM69). 

Metody stanovení shrnuje tabulka 3.

CYP2B6

PfiestoÏe je tímto enzymem metabolizováno 8–10 %
pouÏívan˘ch léãiv, mezi nûÏ patfií prasugrel, amitriptylin,
halotan, ifosfamid, propofol a dal‰í, pfiíspûvek CYP2B6
je vût‰inou nízk˘ (< 30 %) a dá se tedy pfiedpokládat, Ïe
dopad genetického polymorfismu tohoto enzymu na
metabolismus sv˘ch substrátÛ bude také nev˘znamn˘76).

Pfiesto byla navrÏena fiada látek k fenotypizaci
CYP2B6 jako bupropion (hydroxylace), efavirenz (C8-
hydroxylace), diazepam (N-demetylace), S-mefenytoin
(N-demetylace za vzniku nirvanolu), nevirapin (C3-hyd-
roxylace), testosteron (16ß-hydroxylace), efavirenz
(doporuãovan˘ také FDA k metabolick˘m studiím)17),
nejãastûji se v‰ak pouÏívá první z nich76).

Metody stanovení shrnuje tabulka 4.

CYP2C8

Tímto enzymem je metabolizováno asi 5 % pouÏíva-
n˘ch léãiv, pfiiãemÏ zaujímá asi 7 % celkového mnoÏství
P450 v játrech83). K substrátÛm patfií napfiíklad R-ibupro-
fen (druh˘ stereoizomer je substrátem CYP2C9), repag-
linid, ale pfiedev‰ím cytostatikum paklitaxel, kter˘ se
zaslouÏil o obnovení zájmu o tento enzym1), u nûjÏ se
pfiedpokládá moÏná predikce interindividuální variability
na základû genotypu právû CYP2C8 spolu s genem pro
P-gp84).

V˘skyt variantních alel v ãeské populaci byl stanoven
na 0,3 % pro CYP2C8*2, 10,9 % pro CYP2C8*3 a 5,9 %
pro CYP2C8*483).

K fenotypizaci se pouÏívá paklitaxel85), popfi. jsou FDA
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Tab. 2. Analytické metody k fenotypizaci CYP2C9 s pouÏitím
tolbutamidu

Metoda-
detekce Matrice

LOQp
μμg/ml

LOQh
μμg/ml

LOQc
μμg/ml

Refe-
rence

HPLC-UV moã 0,203 0,143 0,45 55)

Kolorimetrie moã/krev > 10 > 10 > 10 56)

GC-EC moã/krev < 10 < 10 < 10 56)

HPLC-UV plazma 2 – 0,1 57)

TLC-UV moã pouze relat. pouze relat. pouze relat. 58)

Tab. 3. Analytické metody k fenotypizaci CYP2C19
s pouÏitím pomûru R/S-mefenytoinu

Metoda-detekce Matrice LOQ ng/ml Reference

GC-MS moã 5 70)

HPLC-UV moã 50 71)

GC-NPD krev 50 72)

GC-NPD moã 12,5 73)

GC-FID moã 25 74)

GC-NPD moã 53,2 75)

Tab. 4. Analytické metody k fenotypizaci CYP2B6 s pouÏitím
bupropionu

Metoda-
detekce Matrice LOQp ng/ml LOQm

ng/ml Reference

HPLC-UV plazma 10 100 77)

HPLC-UV plazma 60 150 78)

HPLC-UV plazma 2,5 10 79)

LC-MS/MS plazma 5 2,5 80)

LC-MS/MS moã 5 25 80)

LC-MS/MS plazma 0,25 1,25 81)

HPLC plazma 10 10 82)
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doporuãeny repaglinid a rosiglitazon jakoÏto substráty
pro in vivo studie17). Nicménû Ïádné rozsáhlej‰í studie pro
zhodnocení kterékoliv z nich provedeny nebyly. 

Metody stanovení shrnuje tabulka 5.

CYP3A
Tento lokus se skládá ze 4 genÛ kódujících 4 enzy-

my: CYP3A4, CYP3A5, CYP3A7 a CYP3A43, pfii-
ãemÏ CYP3A7 se exprimuje jen ve fetálním období
a CYP3A43 se vyskytuje jen ve velmi malém zastou-
pení a nízkou enzymatickou aktivitou. O zbyl˘ch
dvou se pak ãasto mluví prostû jako o „CYP3A“, pro-
toÏe mají ‰irokou a navzájem jen velmi obtíÏnû odli-
‰itelnou substrátovou specificitu. Podílejí se na meta-
bolismu 45–60 % pouÏívan˘ch léãiv91), a vyskytují se
v játrech v nejvût‰ím zastoupení ze v‰ech enzymÛ
P45092).

Díky ‰iroké substrátové specificitû je k dispozici také
znaãné mnoÏství modelov˘ch látek: midazolam, felodi-
pin, buspiron, lovastatin, eletriptan, sildenafil, simvasta-
tin, triazolam, 14C-erytromycin, hydrokortizon, dexame-
tason, antipyrin, chinin17, 50, 93–97). Nejvíce je v‰ak zfiejmû
pouÏíván midazolam1). 

Metody stanovení shrnuje tabulka 6.

Dal‰í enzymy

Kromû P450 podléhají genetickému polymorfismu
dal‰í enzymy, jejichÏ rozdílná aktivita mÛÏe mít klinick˘
dopad. Pfiedev‰ím se jedná o acetyltrasferasu, butyryl-
cholinesterasu, thiopurinmetyltransferasu, dihydropyri-
midindehydrogenasu a uridindifosfátglukuronyltransfe-
rasu 1A11).

N-acetyltransferasa 2

Jak uÏ bylo fieãeno, tento enzym byl jedním z prvních,
u kterého byl popsán genetick˘ polymorfismus – jiÏ
v padesát˘ch letech 20. století brzy po zavedení isoniazi-
du, u nûjÏ „pomalí acetylátofii“ jsou ve vût‰ím riziku pro
vznik periferní neuropatie1).

Jak vypl˘vá z názvu enzymu, substrátem jsou obecnû
dusíkaté látky zahrnující hydraziny, aromatické aminy
a amidy, hydrazidy, tj. kromû jiÏ zmínûného isoniazidu
také prokainamid, aminoglutethimid, mnoÏství sulfona-
midÛ, kyselina 5-aminosalicylová stejnû jako její prolé-
ãivo sulfasalazin, dapson, hydralazin a dal‰í110).

K fenotypizaci se zfiejmû nejãastûji pouÏívá kofe-
in111–115), ale je moÏné, Ïe k acetylaci zde do urãité míry
pfiispívá NAT 1116). Kromû toho pak také isoniazid117),
sulfamethazin118) ãi dapson119). 

Metody stanovení shrnuje tabulka 7.

Butyrylcholinesterasa

Tento enzym se podílí na metabolismu jen nûkolika
léãiv, pfiedev‰ím myorelaxancií suxamethonia a mivoku-
ria, kromû toho pak také kokainu130), prokainu (a pfiíbuz-
n˘ch lokálních anestetik)131) a bambuterolu132). Endogen-
ní funkce není jasná, aãkoliv byla zkoumána její role ve
v˘voji CNS133). Genetick˘ polymorfismus, potaÏmo defi-
cience butyrylcholinesterasy, má klinick˘ v˘znam hlav-
nû u zmínûn˘ch myorelaxancií1).

Ke stanovení aktivity enzymu se vyuÏívají speci-
fické inhibitory, s jejichÏ pomocí jsou získána pro
pfiíslu‰n˘ fenotyp typická „inhibitorová ãísla“. Ta
vyjadfiují pomûrnou aktivitu náleÏící variantní formû
enzymu, která je rezistentní k pfiíslu‰nému inhibito-
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Tab. 5. Analytické metody k fenotypizaci CYP2C8 s pouÏitím
paklitaxelu

Metoda-
detekce Matrice LOQp ng/ml LOQm

ng/ml Reference

HPLC-MS plazma 0,5 0,5 86)

HPLC-UV plazma 10 10 87)

LC-MS/MS plazma 0,25 0,25 88)

LC-MS/MS plazma 0,1 0,1 89)

LC-MS/MS plazma 2 2 90)

LC-MS/MS sliny 0,125 0,125 90)

Tab. 6. Analytické metody k fenotypizaci CYP3A s pouÏitím
midazolamu

Metoda-
detekce Matrice LOQp ng/ml LOQm

ng/ml Reference

HPLC-UV plazma 1 5 98)

HPLC-MS plazma 1 1 99)

HPLC-UV plazma 2 2 100)

GC-MS plazma 0,6 0,3 101)

HPLC-UV plazma 15 15 102)

LC-MS/MS plazma 0,05 0,05 103)

LC-MS/MS sliny 0,05 0,05 103)

HPLC-UV plazma 20 10 104)

HPLC-UV moã 20 10 104)

LC-MS/MS plazma 0,1 0,1 105)

HPLC-UV plazma 23,4 26,6 106)

LC-MS sérum 0,5 0,5 107)

HPLC-UV plazma 5 5 108)

GC-MS plazma 0,01 0,01 109)

Tab. 7. Analytické metody k fenotypizaci NAT 2 s pouÏitím
kofeinu

Metoda-
detekce Matrice

LOQa 
μμg/ml

LOQx 
μμg/ml Reference

HPLC-UV moã 0,5 0,5 120)

HPLC-UV moã 2 2 121)

HPLC-UV moã 5 5 122)

HPLC-UV moã neuvedeno neuvedeno 123)

HPLC-UV moã 0,059 0,059 124)

HPLC-UV moã 0,1-0,3 0,1-0,3 125)

HPLC-UV moã 25 25 126)

HPLC-UV moã 3,4 2,5 127)

HPLC-MS moã 0,22 0,008 128)

HPLC-MS moã 0,001 0,0008 129)
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ru, k aktivitû enzymu celkové. JakoÏto inhibitor se
jiÏ tradiãnû pouÏívá dibukain – „dibukainová ãís-
la“134), fluorid sodn˘ – „fluoridová ãísla“135), ale ani
jeden z tûchto dvou inhibitorÛ není schopen urãit
v‰echny varianty. Tyto lze identifikovat pouze
s pomocí tfietího inhibitoru, karbamátu R0-02 0683,
kter˘ je také pouÏíván nejãastûji a existuje pro nûj
nejvíce dat136). K dal‰ím inhibitorÛm pak patfií sukci-
nylcholin137), chlorid sodn˘138), propanolol139) a n-
butanol140).

Samotná metoda je pak zaloÏena na stanovení úbytku
absorpce záfiení o vlnové délce 240 nm pfii hydrol˘ze
benzoylcholinu butyrylcholinesterasou zároveÀ v pfií-
tomnosti i nepfiítomnosti inhibitoru136).

Dal‰í moÏností je vyuÏití metody zaloÏené na Ell-
manovû metodû pÛvodnû urãené ke stanovení aktivity
acetylcholinesterasy adaptované ke mûfiení aktivity
butyrylcholinesterasy v práci Garryho a Routheho.
Principem metody je ‰tûpení acetylthiocholinu, sulf-
hydrylového analogu acetylcholinu, butyrylcholineste-
rasou, kdy uvolnûná –SH skupina reaguje s 5,5-dithio-
bis-2-nitrobenzoovou kyselinou (DTNB, Ellmanova
ãinidla), za vzniku Ïlutého 2-nitro-5-thiobenzoového
aniontu (NTB-). MnoÏství uvolnûného NTB- je se sta-
novuje kolorimetricky a je úmûrné mnoÏství –SH sku-
pin z roz‰tûpeného acetylthiocholinu141). Tato metoda
pak byla dále vylep‰ena pouÏitím substrátÛ, které
nejsou ‰tûpeny acetylcholinesterasou jako butyrylthio-
cholin142), propanoylthiocholin143).

Thiopurinmethyltransferasa

Klinická dÛleÏitost genetického polymorfismu u toho-
to enzymu je obecnû uznávána a jeho aktivita rutinnû sta-
novována pfied pouÏitím léãiva, které je jeho substrátem.
To se t˘ká pfiedev‰ím azathioprinu a jeho prvního meta-
bolitu 6-merkaptopurinu (6-MP), u nichÏ deficience toho
enzymu pfiedurãuje subjekt k léãivem indukované mye-
lotoxicitû aÏ s fatálním prÛbûhem144).

Frekvence funkãnû deficitních alel byla stanovena
v ãeské populaci na 0,1 % (TPMT*2), 4,3 %
(TPMT*3A), 0,1 % (TPMT*3B) a 0,4 % (TPMT*3C)145).

Fenotypizaci tohoto enzymu, jak bylo zmínûno v˘‰e,
je moÏno provést in vitro v odebrané krvi. Jako substrát
pro TMPT je pouÏíván nejãastûji 6-MP metabolizovan˘
na 6-methylmerkaptopurin, popfi. 6-thioguanin, kter˘ je
pak metabolizován na 6-methylthioguanin. Jako donor
methylové skupiny se pouÏívá S-adenosyl-L-metionin
(SAM)146).

Dihydropyrimidindehydrogenasa (DPD)

Tento enzym je endogennû dÛleÏit˘ pro metabolismus
pyrimidinÛ, tyminu a uracilu, z hlediska léãiv pak pro
metabolismus 5-fluorouracilu a capecitabinu.

Fenotypizaci lze opût provádût ex vivo v odebrané krvi
bez nutnosti vpravovat do tûla xenobiotikum. K tomu se
vyuÏívá inkubace s [14C]-fluorouracilem147, 148) popfi.
[14C]-tyminem149). Pfiesto existují i studie, kde byl feno-
typ stanoven in vivo testem s [13C]-uracilem150). Dal‰í
moÏností je opût stanovení vzestupu vydechovaného
13CO2 po dávce [13C]-uracilu151).

Uridindifosfátglukuronyltransferasa 1A1 (UGT1A1)

UGT1A1 ve‰la ve známost jakoÏto první enzym, pro
nûjÏ FDA vydala povolení farmakogenetického testování
ve spojení s konkrétním lékem – irinotekanem, u kterého
sníÏená aktivita UGT1A1 zvy‰uje riziko diarei a myelo-
suprese1). Dal‰ím substrátem je napfiíklad etoposid92).

Ke stanovení fenotypu se pouÏívá paracetamol152), kro-
mû toho byla popsána studie také s lamotriginem153). 

Metody stanovení shrnuje tabulka 8.

„Koktejly“

V posledních letech se také zaãaly vyvíjet metody
k determinaci aktivit více enzymÛ v jednom stanovení,
kdy je subjektu podáno více léãiv najednou, tj. „kok-
tejl“. Aby takov˘ pfiístup byl moÏn ,̆ je samozfiejmû
nezbytné, aby jednotlivé modelové látky mezi sebou
navzájem nijak neinteragovaly, tj. aby si navzájem nein-
hibovaly/neindukovaly metabolismus, nepotencovaly
úãinek apod.

„CIME koktejl“

V tomto pfiípadû jsou v koktejlu obsaÏeny látky ke sta-
novení 6 enzymÛ P450: kofein pro CYP1A2, amodiachin
pro CYP2C8, tolbutamid pro CYP2C9, omeprazol pro
CYP2C19, dextrometorfan pro CYP2D6 a midazolam
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Tab. 8. Analytické metody k fenotypizaci UGT1A1 s pouÏitím
paracetamolu

Metoda-
detekce Matrice LOQp μμg/ml LOQm

μμg/ml Reference

HPLC-UV moã 15,12 32,73 154)

HPLC-UV krev 0,06 0,131 154)

HPLC-UV moã 5 500 155)

HPLC-UV krev 0,04 0,16 156)

HPLC-UV moã 0,625 0,625 157)

HPLC-UV moã 5 5 158)

HPLC-UV plazma 1 1 159)

HPLC-FD moã 1,95 4,6 160)

HPLC-UV plazma 5,3 4,7 161)

HPLC-UV moã 5 5,7 161)

Tab. 9. „CIME koktejl“ a LOQ parentních látek

Fenotyp Substrát LOQ ng/ml

CYP1A2 kofein 10

CYP2C8 amodiachin 0,2

CYP2C9 tolbutamid 8,7

CYP2C19 omeprazol 2

CYP2D6 dextrometorfan 0,2

CYP3A4 midazolam 1

OATP rosuvastatin 0,1

UGT paracetamol 10

renální funkce memantin 0,1

P-gp digoxin 2
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pro CYP3A, dále paracetamol pro UGT1A1. Kromû
toho stanovuje tento koktejl fenotyp glykoproteinu P
pomocí digoxinu, polypeptidu transportujícího organic-
ké anionty 1B1 (OATP1B1) rosuvastatinem a také renál-
ní funkci memantinem. Látky jsou pak stanovovány
metodou UPLC-MS/MS, jejíÏ limity kvantifikace shrnu-
jí tabulky 9 a 10162).

„Pittsburgh koktejl“

Tento koktejl stanovuje 5 enzymÛ P450: kofein pro
CYP1A2, flurbiprofen pro CYP2C9, mefenytoin pro
CYP2C19, debrisochin pro CYP2D6, chlorzoxazon pro
CYP2E1 a navíc také NAT 2 stanovuje dapsonem. I zde
je pak pouÏito metody k UPLC-MS/MS ke stanovení
substrátÛ i jejich metabolitÛ, LOQ shrnuje tabulka 11119).

„Koktejl Karolinska“

Ke stanovení fenotypu pouze enzymÛ P450, konkrétnû
CYP1A1 (kofein), CYP2C9 (losartan), CYP2C19 (omep-
razol), CYP2D6 (debrisochin), CYP3A4 (chinin) byl navr-
Ïen na Institutu Karolinska tento „koktejl“, tedy „Koktejl
Karolinska“. Jak se ukázalo, metabolismus debrisochinu
byl v‰ak inhibován nûkterou z dal‰ích látek163).

„Cooperstown koktejl“

Tento koktejl stanovuje fenotyp 6 enzymÛ pomocí 4
látek: kofein pro CYP1A2, xantinoxidasu a NAT 2, dex-
trometorfan pro CYP2D6, midazolam i.v. pro jaterní
CYP3A a omeprazol pro CYP2C19164). Následnû byl
validován Cooperstown koktejl + 1, kdy byl do koktejlu

pfiimíchán warfarin s vitaminem K pro stanovení
CYP2C9165).

„Koktejl“ pro stanovení 5 enzymÛ P450

Tento koktejl stanovuje CYP1A2 pomocí kofeinu,
CYP2E1 pomocí chlorzoxazonu, CYP2C19 pomocí
mefenytoinu, CYP2D6 pomocí metoprololu a CYP3A
pomocí midazolamu166).

Závûr

Fenotypizace je zavedená metoda v klinické praxi
pfiedstavující vhodnou alternativu ke genotypizaci. Obû
metody mají své nev˘hody a vhodnost té které z nich se
li‰í pfiípad od pfiípadu a mnohdy rozhoduje jen jejich
dostupnost pro lékafie. Pfiesto zde rozdíly v pouÏitelnos-
ti existují: Genotypizace ze své podstaty mÛÏe odhalit
pouze deficience dûdiãného rázu a deficience zpÛsobe-
né napfiíklad postiÏením jater, popfi. inhibicí metabolic-
k˘ch enzymÛ ko-medikací ãi enviromentálními vlivy jí
uniká. Naproti tomu napfi. u CYP2D6 je schopna rozdû-
lit populací do 4 skupin dle geneticky podmínûné akti-
vity enzymu, pfii fenotypizaci mûla tato aktivita vût‰i-
nou jen bimodální (tj. EM a PM), v˘jimeãnû trimodální
(tj. EM, IM, PM) rozdûlení. Ultrarychlé metabolizátory
rozli‰it nedokáÏe, k tomu by patrnû bylo potfieba pouÏít
jin˘ch modelov˘ch látek, ãi jin˘ch (krat‰ích) vzorkova-
cích ãasÛ, které by pak pravdûpodobnû zase neodli‰ily
PM.

Stfiet zájmÛ: Ïádn .̆
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Od roku1996 vychází pravidelnû pomÛcka pro provoz
lékáren – Solutio. Navazuje tak na dfiíve vydávané Tabul-
ky pro lékárníky, které pfiipravoval kolektiv pracovníkÛ
farmaceutické fakulty. PÛvodnû tiskem vydávané pfiíruã-
ky pfie‰ly z dÛvodu ekonomick˘ch od roku 2000/2001 na
internet. 

Nové vydání obsahuje následující ãlánky a pfiehledy:
Léãivé pfiípravky pro vzácná onemocnûní – orphan
drugs, chondoprotektiva, SQOOM koncept, antiAge
a med, dále struãn˘ pfiehled ãínské medicíny, oãkování,
„Chci pro své dítû zdraví a bezpeãn˘ domov“ – Cocoon
strategie. V praxi se jistû bude hojnû pouÏívat pfiehled:
„Figle, finty, triky i zlep‰ováky v praxi“.

Bezesporu zajímav˘ je pfiehled „Zdravé jídlo zajistí
dlouh˘ a kvalitní Ïivot“ a moderní pojetí péãe o zdraví
„Zdravotní gramotnost je základní podmínkou rozvoje
zdraví lidí“. Tradiãnû je zafiazen lékopis, a to: âesk˘
lékopis 2009 – Doplnûk 2011. Poprvé je uveden ãlánek
o poslání a úkolech „âeského zdravotnického fóra“,
zpráva o novinkách ãinnosti âeského farmaceutického
muzea v Kuksu. JiÏ ãtvrté pokraãování pfiiná‰í dûjiny
na‰í farmaceutické literatury – zpracováno je období
1751–1880.

Historické pfiehledy pfiiná‰í: 140 let âeské farmaceu-
tické spoleãnosti, dále 20 let farmaceutické fakulty Vete-
rinární a farmaceutické univerzity v Brnû a Dûjiny léká-
ren ve mûstû Hradec Králové.

Dále je uveden pfiehled akreditovan˘ch oborÛ pro
habilitaãní fiízení na farmaceutické fakultû univerzity
Karlovy. Zájmu se budou jistû tû‰it pfiehledy o obháje-
n˘ch rigorózních pracích (PharmDr) v letech 2010
a 2011 na obou ãesk˘ch farmaceutick˘ch fakultách
(Brno a Hradec Králové) a obhájen˘ch disertaãních pra-
cí doktorského studia (PhD) v letech 2010 a 2011 na
zmínûn˘ch fakultách.

V roce 2012 oslavují v˘znamná Ïivotní jubilea aktivní
ãe‰tí farmaceuti – historici, a to 90 let nestor ãesk˘ch far-
maceutick˘ch historikÛ RNDr.PhMr Zdenûk Hanzlíãek
a 80 let RNDr. PhMr. Pavel Drábek. Obûma redakce
nejen blahopfieje a dûkuje za dlouholetou ãinnost v obo-
ru, ale pfiiná‰í i Laudatia na jejich poãest pro informaci
‰iroké farmaceutické vefiejnosti.

14. svazek bezesporu nejlépe zhodnotí uÏivatelé
v denní praxi. Podle vstupu na internet je o publikaci
zájem a to nejen mezi pracovníky lékáren, ale i mezi stu-
denty. Pro 15. svazek jiÏ dnes Ïádáme nejen o námûty,
ale také o aktivní spolupráci.

J. Solich
za redakční radu SOLUTIA
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