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Souhrn

Oceány pokrývají velkou část povrchu naší planety a jsou 
domovem nepřeberného množství organismů. Řada z nich 
teprve čeká na své objevení, podobně jako chemické lát-
ky, které syntetizují. Odvětví farmakologie označované 
v zahraniční literatuře termínem „marine pharmacology“ 
se zabývá studiem právě těchto látek a  jejich využitím 
v medicíně. Původ v mořských organismech je pro většinu 
z nich jediným pojítkem a tato různorodost se promítá i do 
širokého spektra možného využití. Mnohé se vyznačují 
zcela unikátním mechanismem účinku nabízejícím nové 
možnosti terapeutického působení. Ačkoliv jich do klinic-
ké praxe zatím proniklo jen několik (například eribulin či 
cytarabin), potenciál je obrovský. V  klinických studiích 
v současnosti sice převažují farmaka pro terapii nádoro-
vých onemocnění, zkoumány jsou ale i látky s poten-
ciálním využitím v léčbě bolesti či Alzheimerovy choroby 
a mnoha dalších.
Klíčová slova: léčiva mořského původu

Summary

Oceans cover a large part of our planet and they are a home 
for an enormous amount of species. A lot of them are still 
waiting to be discovered by man, much like the chemicals 
they synthesize. Marine pharmacology concerns itself with 
the study of these chemicals and their potential use in medi-
cine. Origin in marine species is for the most part the only 
thing this large and diverse group of substances have in 
common, so the spectrum of possible applications is quite 
wide. Many of these substances have a unique mechanism 
of action, offering new therapeutic possibilities. Although 
just a few of them are used in a clinical practice today (e.g. 
eribulin, cytarabine), the future looks quite promising. Cu-
rrent clinical trials focus mostly on the therapy of cancer, but 
trials for therapy of pain or Alzheimer’s disease and many 
others are also underway. 
Key words: marine pharmacology
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Úvod

Oceány pokrývají přes 70 % povrchu naší planety 
a jsou dle odhadů domovem pro více než 25 % všech 
rostlinných a  živočišných druhů1). Je tedy logické, 
že ani tato oblast neušla zájmu vědy při hledání no-
vých biologicky účinných látek a  farmak. Objev ce-
falosporinů v  plísni Cephalosporium acremonium, 
kultivované z  mořské vody profesorem Giuseppem 
Brotzu (a následná práce výzkumného týmu oxfordské 
univerzity2)) během čtyřicátých let 20. století je jed-
ním z velkých příběhů o „lovcích mikrobů“ a zároveň 
počátkem vývoje celé skupiny antibiotik, dnes tak běž-
ných v klinické praxi3). 
Podobně i počátek výzkumu potenciálního farmakolo-
gického využití metabolických produktů mořských bez-
obratlých sahá až do padesátých let 20. století4, 5). Jeho 
prvním cílem se stali především zástupci houbovců 
(Porifera), pláštěnců (Tunicata) a měkkýšů (Mollusca) 
obývající pobřežní oblasti oceánu, vzhledem k  jejich 
relativně snadné dostupnosti4, 6). Později, s  rozvojem 
technologie přístrojového potápění se začala oblast 
výzkumu rozšiřovat. V centru pozornosti nicméně stá-
le zůstávají korálové útesy, porosty mangrovů a  další 
ekosystémy s vysokou biodiverzitou, které tak posky-
tují největší množství potenciálně zajímavých látek6). 
Těmito látkami jsou nejčastěji sekundární metabolity, 
tedy produkty, které organismus nezbytně nepotřebuje 
ke svému přežití. Zdá se však, že situace není zdaleka 
tak jednoduchá a u řady látek dříve izolovaných se pro-
kázalo, že tyto ve skutečnosti nejsou produktem daného 
organismu ale symbiotických mikroorganismů7, 8). Mik-
roorganismy mohou podle některých studií tvořit 40 až 
60 % biomasy některých houbovců9), kteří jsou skuteč-
nou „pokladnicí” potenciálních léčiv5, 10).
Mnohdy velmi komplexní struktura těchto látek před-
stavuje skutečný oříšek pro jejich průmyslovou syn-
tézu11, 12). Ta je však často ekonomicky i  časově vý-
hodnější metodou zisku dostatečného množství účinné 
látky než lov volně žijících organismů, ať už se jedná 
o  semisyntézu (tedy syntézu vycházející z  určitého 
prekurzoru) či syntézu totální4, 13). Pro výrobu gramo-
vých množství je totiž u  řady z  těchto látek potřeba 
několika tun daného organismu13–15).
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že příčinou budou faktory prostředí, které sice mohou 
vyhovovat makroorganismu, zásadním způsobem však 
ovlivňují společenství mikroorganismů13, 17, 18).
Další výhodnou metodou může být biosyntéza účin-
ných látek ve snadněji kultivovatelných organismech 
(formou heterelogní exprese)19).
Smyslem tohoto textu je postihnout informace o nej-
zajímavějších léčivech mořského původu nacházejí-
cích se v klinické fázi vývoje, jejichž shrnutí obsahuje 
tabulka 1. V dalším textu pak následují podrobné in-
formace o jednotlivých látkách. 

Chemická syntéza není jedinou alternativou ke zpraco-
vávání volně žijících organismů. Některé z nich se daří 
pěstovat přímo v moři či laboratorně16, 17). Obě varianty 
však přináší řadu problémů. Při pěstování v moři mů-
žeme jen těžko ovlivnit celou řadu environmentálních 
faktorů, v laboratorních podmínkách může představo-
vat velkou výzvu vytvoření vhodného mikroprostře-
dí (teplota, salinita, pH a mnohé další faktory)13). Ani 
v  případě, že se podaří např. houbovce vypěstovat, 
není úspěch zaručen, jelikož i dobře rostoucí organis-
my mohou mít velmi nízký obsah účinné látky. Zdá se, 

Tab. 1. Vybrané látky mořského původu klinicky užívané či v klinické fázi vývoje

Účinná látka Stav Související mořský organismus Terapeutický potenciál
zikonotid registrován v EU 

i v USA (Prialt®)
homolice mágova (Conus 
magus) 

analgetikum

trabectedin registrován v EU 
i v USA (Yondelis®)

pláštěnec Ecteinascidia turbinata nádorová onemocnění: sarkom měk-
kých tkání, ovariální karcinom

brentuximab vedotin 
(SGN-35)

registrován v EU 
i v USA (Adcetris®)

měkkýš Dolabella auricularia nádorová onemocnění: CD30+ Hodgki-
nův lymfom, systémový anaplastický 
velkobuněčný lymfom

eribulin registrován v EU 
i v USA  (Halaven®)

houbovec Halichondria okadai nádorová onemocnění: karcinom prsu, 
liposarkom

cytarabin registrován v EU
i v USA

houbovec Tectitethya crypta nádorová onemocnění: akutní leukemie, 
lymfomatózní meningitida

vidarabin registrace v EU vyprše-
la, v USA registrován 
ale neprodává se1 

houbovec Tectitethya crypta antivirotikum; (infarkt myokardu, 
srdeční selhání)

lurbinectedin fáze III pláštěnec Ecteinascidia turbinata nádorová onemocnění: sarkom měk-
kých tkání, ovariální karcinom

tetrodotoxin fáze III ryby čeledi Tetraodontidae analgetikum; závislosti
glembatumumab vedo-
tin (CDX-011)

fáze II měkkýš Dolabella auricularia nádorová onemocnění: karcinom prsu, 
melanom

cyklické depsipeptidy fáze II didemnin B – pláštěnec Tridi-
demnum solidum, plitidepsin 
– pláštěnec Aplidium albicans, 
kalahalid F – měkkýš Elysia 
rufescens

nádorová onemocnění

skvalamin fáze II žralok ostroun obecný (Squalus 
acanthias)

diabeticka proliferativní retinopatie, 
nádorová onemocnění: nemalobuněčný 
karcinom plic

DMXBA fáze II pásnice Amphiporus lactifloreus schizofrenie, Alzheimerova choroba
bryostatin-1 fáze II mechovec Bugula neritina Alzheimerova choroba, nádorová one-

mocnění, HIV, ischemie mozku
plinabulin fáze I houby rodu Aspergillus nádorová onemocnění
marizomib fáze I aktinomycety rodu Salinispora nádorová onemocnění: mnohočetný 

myelom, glioblastom

1Databáze léčiv FDA. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm (30. 5. 2017)
Stav – v jaké fázi klinického výzkumu se daná látka nachází (bereme v úvahu nejvyšší dosaženou fázi pro libovolnou indikaci), 
u registrovaných léčivých přípravků je uveden jejich registrační status v EU a USA
Související mořský organismus – organismus, ze kterého byla látka poprvé izolována (případně hostitel mikroorganismů, které 
látku syntetizují)
Terapeutický potenciál – onemocnění či indikace, ve kterých by daná látka mohla nalézt uplatnění (u registrovaných léčivých 
přípravků jsou další zkoumané, neschválené indikace uvedeny v závorce – podrobnější informace dále v textu)
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a další) a úzký terapeutický index. Z klinických studií 
vyplývá i výhodnost kombinované IT analgezie s mor-
finem u obtížně kontrolovatelné bolesti, která umožňu-
je snížení dávky zikonotidu i opioidů26, 27).
Jedna případová studie (tři pacienti s  různě pokroči-
lým nádorovým onemocněním a obtížně zvladatelnou 
bolestí a  jeden pacient s  centrální neuropatickou bo-
lestí) ukazuje na možnost využití pro intracerebroven-
trikulární terapii28).
Kromě analgetického působení by snad v  budoucnu 
mohl zikonotid najít uplatnění i v terapii ischemické-
ho poškození mozku. Studie na potkanech a králících 
ukázaly, že zikonotid významně snižuje hromadění 
vápníku v ischemických neuronech a může tak snižo-
vat míru jejich poškození29–31).

Trabectedin (Ecteinascidin-743, ET-743)

Trabectedin byl poprvé izolován z mořské sumky Ec-
teinascidia turbinata32). Na základě genomové analýzy 
se však zdá, že skutečným producentem je symbiotic-
ký mikroorganismus Candidatus endoecteinascidia 
frumentensis33, 34). Tento mikrob má velice redukovaný 
genom (ecteinascidin je dle genomové analýzy pravdě-
podobně jeho jediný sekundární metabolit) a zachování 
genu pro ecteinascidin zřejmě svědčí o  významnosti 
produkce tohoto metabolitu pro vztah symbionta s hos-
titelem34). 
Účinek trabectedinu v  protinádorové terapii pravděpo-
dobně vychází z několika mechanismů. Jedním vysvět-
lením je jeho vazba do oblasti malého žlábku (minor 
groove) DNA, kde působí alkylaci aminoskupiny guani-
nu na pozici 235). Vazba trabectedinu na DNA změní její 
strukturu a brání tak vazbě proteinů nutných pro repli-
kaci DNA36) a  naruší funkci nucleotide excision repair 
(NER) systému37). Narušení NER vede ke vzniku jedno-
řetězcových zlomů DNA neúčinnou excizí alkylované-
ho nukleotidu38). Výsledky některých studií ukazují, že 
funkční NER je pro dobrý účinek trabectedinu zásadní. 
Porucha v NER systému výrazně snižuje jeho účinnost, 
naopak zvýšeně aktivní NER může vést k zesílení účin-
nosti trabectedinu38–40).
Jiné zdroje uvádějí, že alespoň část účinku trabectedinu 
v  protinádorové léčbě vychází z  jeho selektivního pů-
sobení na makrofágy. Skupinou makrofágů, která nás 
v  tomto případě zajímá, jsou tzv. tumor associated ma-
crophages (TAM)41). TAM hrají významnou úlohu v ná-
dorovém mikroprostředí a mohou přispívat k  jeho pro-
gresi, např. proangiogeneticky42–44).
Dalším mechanismem může být kompetice trabectedinu 
o vazebné místo v malém žlábku DNA s high mobility 
group A (HMGA) proteiny, kde znemožňuje jejich vaz-
bu a tím narušuje jejich vliv na regulaci transkripce řady 
genů a mimo jiné zvyšuje citlivost buněk k radioterapii45). 
HMGA-1 jsou zvýšeně exprimovány v celé řadě malignit 
a hrají významnou roli v jejich progresi46).
Zajímavým účinkem trabectedinu je i  snížení exprese 
P-glykoproteinu, které může zvýšit účinnost jak trabec-
tedinu, tak i dalších cytotoxických látek47). 

Zikonotid (SNX-111)

Zikonotid je syntetický analog ω-konopeptidu MVIIA, 
který je součástí jedu mořského plže Conus magus20). 
Působí jako selektivní blokátor napěťově řízených váp-
níkových kanálů typu N. Tento typ kanálů pro vápenaté 
ionty se nachází např. na neuronech21), v srdci22) či v led-
vinách23), kde se účastní regulace řady kalcium-depen-
dentních procesů, jako je uvolňování neurotransmiterů či 
aktivace systému druhých poslů. Lokalizace těchto kaná-
lů na neuronech dorzálních míšních rohů a blok ascen-
dentní dráhy bolesti jsou pravděpodobným vysvětlením 
analgetického působení zikonotidu20, 24). 

V České republice je zikonotid dostupný v registrova-
ném léčivém přípravku PRIALT, který však v součas-
nosti není na Seznamu cen a úhrad léčivých přípravků 
a potravin pro zvláštní lékařské účely, není tedy hrazen 
z veřejného zdravotního pojištění. Dle SPC je PRIALT 
indikován k léčbě silné, chronické bolesti u dospělých, 
kteří vyžadují intratekální analgezii. Výraznou výho-
dou zikonotidu oproti opiovým i  jiným analgetikům 
je, že na jeho analgetický účinek nevzniká tolerance25). 
Mezi hlavní nevýhody patří nutnost intratekálního (IT) 
podání, časté nežádoucí účinky (závratě, nauzea, zma-
tenost či jiné kognitivní a neuropsychiatrické projevy 

Homolice mágova (Conus magus)
Systematické zařazení:
Říše: živočichové (Animalia)
Kmen: měkkýši (Mollusca)
Třída: plži (Gastropoda)
Řád: jednopředsíňový (Caenogastropoda)
Čeleď: homolicovití (Conidae)
Rod: homolice (Conus)

Rozšíření: Poměrně široce rozšířena v  Indickém a Tichém oceánu, 
obvykle v mělkých vodách.
Ohrožení: Dle Červeného seznamu IUCN (Mezinárodního svazu 
ochrany přírody) jde o  málo dotčený druh (least concern – LC – 
nejnižší stupeň rizika ohrožení).
Způsob života: Jedná se o  dravé plže, aktivní především v  noci. 
Dospělí jedinci se živí rybami, mladí jedinci jsou vermivorní. Loví 
pomocí „harpunovité“ raduly, kterou prudce vymrští do těla oběti 
a ta je paralyzována jedem. Omráčenou kořist si následně přitáhnou 
k ústnímu otvoru a vcelku ji pozřou.

Jedy homolic obsahují celou řadu zajímavých látek. Druhy C. 
geographus a C. tulipus například k omráčení ryb využívají látky na 
bázi inzulinu a vyvolají tak u  své kořisti hypoglykemický šok (viz 
Safavi-Hemami et al. 2015).

Zdroje boxu:
Santhanam R. Biology and ecology of venomous marine snails. 
Waretown, NJ: Apple Academic Press, 2016. 
IUCN. http://www.iucnredlist.org/details/summary/192549/0 (30. 5. 
2017)
Pfleger V. České názvy živočichů. III, Měkkýši (mollusca). Praha: 
Národní muzeum 1999. 
Safavi-Hemami H., Gajewiak J., Karanth S., Robinson S. D., 
Ueberheide B., Douglass A. D., Schlegel A., Imperial J. S., 
Watkins M., Bandyopadhyay P. K., Yandell M., Li Q., Purcell A. 
W., Norton R. S., Ellgaard L., Olivera B. M. Specialized insulin 
is used for chemical warfare by fish-hunting cone snails. Proc. Natl. 
Acad. Sci. U. S. A. 2016; 112: 1743–1748.
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fomem po autologní transplantaci kmenových buněk 
(ASCT) nebo po nejméně dvou předchozích terapiích 
v případech, kdy ASCT nebo kombinovaná chemotera-
pie nepředstavuje léčebnou možnost. Dále je indikován 
k léčbě dospělých pacientů s relabujícím nebo refrakter-
ním systémovým anaplastickým velkobuněčným lym-
fomem (sALCL)53). 
Případové studie ukázaly na možnost využití brentuximab 
vedotinu v  terapii CD30+ Sézaryho syndromu54–56) a po-
kročilé mycosis fungoides55–57), výsledky klinické studie 
fáze II pak potvrdily jeho účinnost u kožních T-buněčných 
lymfomů i lymfomatoidní papulózy58). Další klinická stu-
die fáze II pak prokázala jeho účinnost v terapii difuzního 
velkobuněčného B lymfomu (DLBCL) s variabilní expresí 
CD3059).
Jedna případová studie, kdy byl brentuximab vedotin po-
dán pacientovi s CD30+ plasmablastickým lymfomem60) 
a nadějné výsledky výzkumu na buněčných liniích me-
sotheliomu61) snad ukazují jen některé další budoucí cíle 
terapie brentuximab vedotinem.

Eribulin mesylát

Eribulin (E7389) je syntetický derivát halichondrinu B62), 
který působí jako inhibitor polymerizace tubulinu63). Na 
rozdíl od vinblastinu či paklitaxelu (dalších látek působících 
na dynamiku tubulinu) neinhibuje proces zkracování mikro-
tubulů, pouze jejich růst a dynamicitu62, 64). 
Studie na potkanech dále ukázaly vliv eribulinu na pro-
krvení nádorové tkáně (eribulin zvyšuje prokrvení nádo-
ru a ovlivňuje tak strukturu nádorového mikroprostředí 
a snad i umožňuje lepší průnik chemoterapeutik65)), další 

Trabectedin je v České republice registrován v přípravku 
YONDELIS, v současnosti není hrazen z veřejného zdra-
votního pojištění. Je indikován k léčbě pokročilého sar-
komu měkkých tkání (poté, co selže léčba antracykliny 
a ifosfamidem nebo pokud tyto nejsou vhodné) a v kom-
binaci s  pegylovaným liposomálním doxorubicinem 
k léčbě pacientek s relabujícím ovariálním karcinomem 
citlivým na platinu36).
Výsledky malé, multicentrické studie 2. fáze (52 pacien-
tů) svědčí pro možné budoucí využití trabectedinu u po-
kročilého karcinomu prsu po terapii antracykliny a taxa-
ny (response rate 12 % u pacientů, jimž byl trabectedin 
podáván jednou za 3 týdny)48).

Brentuximab vedotin (SGN-35)

Brentuximab vedotin je konjugát protilátky anti-CD30 
a cytotoxického agens monomethyl auristatinu E. Mono-
methyl auristatin E (MMAE) je syntetický analog inhi-
bitoru polymerizace tubulinu, dolastatinu 1049), který byl 
izolován z mořského plže Dolabella auricularia50).
Na tubulinu se dolastatin váže do místa poblíž vazebného 
místa pro vinca alkaloidy a jeho vazba způsobuje nekom-
petitivní inhibici vazby vincristinu51).
Kromě inhibice polymerizace tubulinu působí dolasta-
tin 10 i  na dendritické buňky (mimo jiné zrychluje je-
jich maturaci) a jeho protinádorové působení tak vychází 
i  z  aktivace celulární imunity, dle výzkumu na myších 
vede porucha imunity k oslabení jeho účinku52).
Brentuximab vedotin je u  nás registrován v  léčivém 
přípravku ADCETRIS53), je indikován k  léčbě dospě-
lých pacientů s relabujícím CD30+ Hodgkinovým lym-

Sumky (Ascidiacea)
Systematické zařazení:
Říše: živočichové (Animalia)
Kmen: strunatci (Chordata)
Podkmen: pláštěnci (Tunicata)
Třída: sumky (Ascidiacea)

Rozšíření: Sumky můžeme najít ve všech mořích, od pobřežních vod 
až po hlubokomořské příkopy.
Způsob života: Dospělé sumky jsou ve výrazné většině případů 
přisedle žijící živočichové, obvykle s vakovitým tvarem těla. Některé 
druhy jsou solitární, jiné žijí v koloniích. Tělo je vždy kryto tunikou, 
tvořenou materiálem podobným celulóze. Na povrchu těla jsou dva 
otvory: orální (branchiální) a atriální. Orální otvor ústí do objemného 
branchiálního vaku tvořícího velkou část těla sumek. Mořská voda 
je nasávána do branchiálního vaku, prochází přes perforovanou 
stěnu, v  níž dochází k  zachycení potravy, do atriální dutiny 
a  následně odchází ven z  těla atriálním otvorem. Většina druhů se 
velikostí pohybuje od několika milimetrů do 15 centimetrů. Některé 
koloniálně žijící druhy však dosahují i  mnohem větších rozměrů. 
Jedná se o  hermafroditní viviparní či oviparní živočichy. Larvy 
tvarem připomínají pulce, dosahují velikosti několika milimetrů, jsou 
pohyblivé a nepřijímají potravu. Na vhodném místě přisednou a začne 
metamorfóza v dospělého jedince. Součástí těla larev je notochord 
a dorzální neurální trubice které během přeměny v dospělce mizí.

Zdroje boxu:
Hutchins M., Thoney D. A., Schlager N. Grzimek’s Animal Life 
Encyclopedia, 2nd edition. Volume 1, Lower Metazoans and Lesser 
Deuterostomes. Farmington Hills, MI: Gale Group 2003.

Zadožábří (Opistobranchia)
Systematické zařazení:
Říše: živočichové (Animalia)
Kmen: měkkýši (Mollusca)
Třída: plži (Gastropoda)
Řád: zadožábří (Opistobranchia)
	
Zadožábří plži, mezi které řadíme i  zeje ušatého (Dolabella 
auricularia), jsou převážně mořští plži s  redukovanou či zcela 
chybějící ulitou. Žábry jsou zachovány pouze u  primitivnějších 
druhů, evolučně mladší zádožábří dýchají pomocí výrůstků pokožky. 
Většina zadožábrých plžů je masožravá, živí se např. houbovci, 
korály, měkkýši, vejci ryb, měkkýšů či hlavonožců. Existují mezi 
nimi i  výhradně herbivorní druhy pojídající řasy či druhy živící se 
filtrací mikroorganismů z  mořské vody. Naopak zadožábré plže 
nevyhledává téměř žádný predátor. Jsou schopni si pro vlastní potřebu 
uchovat toxické či odpuzující složky svojí potravy a  použít je pro 
vlastní ochranu. Některé druhy takto dokážou využít i žahavé buňky 
medúz. Výstrahou pro potenciálního nepřítele může být i  pestré 
zbarvení. Z hlediska rozmnožování jde o hermafrodity, většina z nich 
je oviparních. Z vejce se vyvine plovoucí larva – veliger.

Zdroje boxu:
Hutchins M., Craig S. F., Thoney D. A., Schlager N. 
Grzimek’s  Animal Life Encyclopedia, 2nd edition. Volume 2, 
Protostomes, edited by Farmington Hills, MI: Gale Group, 2003.
Sedlák E. Zoologie bezobratlých. 2., přepracované vydání. Brno: 
Masarykova univerzita 2002.
Pfleger V. České názvy živočichů. III, Měkkýši (Mollusca). Praha: 
Národní muzeum 1999.
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forma s  prodlouženým uvolňováním nabízí výhodnější 
dávkovací režim83–86).
Kombinace cytarabinu s daunorubicinem (označovaná 
jako DA režim či „7+3”; 7 dní kontinuální infuze cy-
tarabinu + 3 dny infuze daunorubicinu) je už poměr-
ně dlouhou dobu využívaná v první linii terapie akutní 
myeloidní leukemie87–89). Studie zkoumající jiné možné 
režimy spočívají obvykle ve změně antracyklinu (např. 
za idarubicin90, 91)), přidání dalšího léku (např. kladribi-
nu92, 93)) či kombinaci obojího (např. CLA-Ida režim ob-
sahující kladribin, cytarabin a idarubicin94, 95)). Ačkoliv 
se tyto kombinace stále zlepšují ve snaze maximalizo-
vat terapeutickou odpověď a  minimalizovat toxicitu, 
cytarabin zůstává jejich ústřední komponentou. To platí 
i  v  terapii řady lymfomů před autologní transplantací 
kmenových buněk, např. režim BEAM (zahrnující kar-
mustin, etoposid, cytarabin a melphalan96)) či jeho va-
rianty LEAM (místo karmustinu je použit lomustin97)) 
nebo NEAM (místo karmustinu je použit mitoxant-
ron98)).
O významu cytarabinu v současnosti i do budoucna snad 
svědčí počet probíhajících studií: 136 v EU (22 s účastí 
v ČR)99) a 289 v USA100)).

studie (na potkanech a  nádorových buněčných liniích) 
ukázaly, že eribulin snižuje epiteliálně-mezenchymální 
tranzici (EMT) a naopak posiluje mezenchymálně-epite-
lialní tranzici (MET)66, 67). EMT je proces fenotypických 
změn buňky, kdy dochází např. ke změnám v mezibuněč-
né adhezi, ztrátě polarizace buňky či posílení její schop-
nosti migrovat. Tento proces zásadně ovlivňuje invazivi-
tu a schopnost tvořit metastázy68).
Halichondrin B byl poprvé izolován z mořského hou-
bovce Halichondria okadai69), později i z dalších hou-
bovců (např. Phakellia carteri)70). Izolace ze zástupců 
dvou různých rodů hobovců by mohla svědčit pro jeho 
mikrobiální původ63).
Eribulin mesylát je u nás dostupný v registrovaném léči-
vém přípravku HALAVEN, je indikován k  léčbě dospě-
lých pacientů s  lokálně pokročilým nebo metastazujícím 
karcinomem prsu, jejichž stav se dále zhoršil po nejméně 
jednom chemoterapeutickém režimu, dále je indikován 
k léčbě dospělých pacientů s neresekovatelným liposarko-
mem, kteří již podstoupili léčbu antracyklinem (nebo pro 
ně tato léčba nebyla vhodná)71). HALAVEN je hrazen z ve-
řejného zdravotního pojištění.
Jeho účinnost v  terapii metastazujícího karcinomu prsu 
byla potvrzena studií fáze III – EMBRACE72), srovnáva-
cí studie fáze III pro terapii pokročilého liposarkomu či 
leiomyosarkomu (eribulin vs dakarbazin) potvrdila účin-
nost eribulinu i v této indikaci73).
Studie fáze II pak ukázaly aktivitu u  pokročilého ne-
malobuněčného karcinomu plic (NSCLC)74–76), metasta-
tického na kastraci rezistentního karcinomu prostaty77), 
rekurentního karcinomu ovaria78) a několika podtypů sar-
komu měkkých tkání79).
Studie na buňkách gemcitabin-rezistentního karcinomu 
pankreatu také vyšla s poměrně slibnými výsledky a eri-
bulin by se tak snad v budoucnu mohl stát součástí tera-
pie i tohoto onemocnění80).

Cytarabin (cytosin arabinosid, ara-C)

Cytarabin je derivát nukleosidu deoxycytidinu, v němž 
je deoxyribóza nahrazena arabinózou. V buňce dochází 
k jeho přeměně na cytosin arabinosid trifosfát, který sou-
těží s deoxycytidin trifosfátem o zabudování do struktury 
DNA. Pokud dojde k zabudování arabinosidu, DNA po-
lymeráza je inhibována a další syntéza DNA se zastaví81). 
To vede k zástavě buněčného cyklu a později k apoptóze.
Historie cytarabinu je na svém začátku výrazně spojena 
s vidarabinem, vývoj obou totiž vycházel z objevu spon-
gonukleosidů v houbovci Tectitethya crypta82). 
V  České republice je cytarabin dostupný v  registrova-
ných přípravcích ALEXAN, CYTARABIN KABI, CY-
TARABINE ACCORD, CYTOSAR a  DEPOCYTE. Je 
indikován zejména k  dosažení remise při akutní mye-
loidní leukemii u dospělých a při jiných formách akutní 
leukemie u dospělých a dětí. 
V přípravku DEPOCYTE (forma s prodlouženým uvol-
ňováním) je pak indikován k  intratekální léčbě lymfo-
matózní meningitidy. Ačkoliv lze u meningeálního posti-
žení při leukemii využít i  jiné přípravky s cytarabinem, 

Houbovci (Porifera)
Systematické zařazení:
Říše: živočichové (Animalia)
Kmen: houbovci (Porifera)
							     
Rozšíření: Houbovce můžeme nalézt ve slaných i sladkých vodách po 
celém světě. 
Kmen houbovců se dále dělí do několika tříd, přičemž největší z nich je 
třída rohovitých (Demospongiae), zahrnující více než 80 % všech druhů 
(zahrnuje např. i Halichondria okadai či Tectitethya crypta). Kostra 
rohovitých houbovců je tvořena křemitými jehlicemi, sponginem či 
kombinací obou. Jedna skupina rohovitých houbovců kostru zcela 
postrádá.
Způsob života: Většina houbovců žije přisedle a živí se drobnými 
mikroorganismy. Mořská voda vstupuje do těla houbovce skrz 
četné otvory na jeho povrchu, mikroorganismy jsou fagocytovány 
choanocyty, které pohyby svých bičíků zajišťují proudění vody, 
která následně opouští centrální dutinu houbovce otvorem zvaným 
osculum. Nemají pravé kontraktilní buňky ani nervovou soustavu, 
u  některých druhů ale byly nalezeny myocyty a  roztroušené 
bipolarní či multipolární neurony. Rovněž dýchací, oběhové 
ani vylučovací soustavy nejsou vytvořeny. Některé druhy jsou 
hermafrodité, jiné gonochoristé. Rozmnožování probíhá pohlavně 
i  nepohlavně. Při pohlavním rozmnožování vzniká pohyblivá 
larva (velikosti okolo 300 μm), která se na vhodném místě usadí 
a  přemění se v  dospělého houbovce. Nepohlavně se rozmnožují 
vnějším i vnitřním pučením. Pro houbovce našla využití i skupina 
delfínů, kteří si jimi zřejmě chrání rostrum před odřením při 
pátrání po rybách ukrytých v písku na mořském dně (viz Krützen 
et al., 2014).

Zdroje boxu:	
Hutchins M., Thoney D. A., Schlager N. Grzimek’s Animal Life 
Encyclopedia, 2nd edition. Volume 1, Lower Metazoans and Lesser 
Deuterostomes. Farmington Hills, MI: Gale Group 2003.	
Sedlák E. Zoologie bezobratlých. 2., přeprac. vyd. Brno: Masarykova 
univerzita 2002.		
Krützen M., Kreicker S., MacLeod C. D., Learmonth J., Kopps 
A. M., Walsham P., Allen S. J. Cultural transmission of tool use 
by Indo-Pacific bottlenose dolphins (Tursiops sp.) provides access to 
a novel foraging niche. Proc. R. Soc. B Biol. Sci. 2014; 281.
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Tetrodotoxin (TTX)

Tetrodotoxin je jeden z  vůbec nejsilnějších neurotoxi-
nů116), známý zejména díky přítomnosti v rybách čeledi 
Tetraodontidae117), ale izolován byl i z dalších mořských 
i suchozemských organismů116, 118–121). 
Přinejmenším u ryb čeledi Tetraodontidae však bylo pro-
kázáno, že skutečným producentem TTX jsou endosym-
biotické bakterie obývající jejich trávicí trakt116, 122, 123).
I přes jeho poměrně složitou strukturu dnes existuje ně-
kolik způsobů průmyslové syntézy124), což je dobrým vý-
chodiskem pro budoucí využití. 
V budoucnu by se tetrodotoxin mohl uplatnit jako anal-
getikum116) a snad i  jako lék pro snížení relapsů drogo-
vých závislostí (studie s nízkými dávkami TTX ke sníže-
ní cravingu a úzkosti u pacientů léčících se ze závislosti 
na heroinu125, 126)).
Tetrodotoxin působí jako selektivní blokátor sodíkových 
kanálů117). Podle senzitivity těchto kanálů je dělíme na te-
trodotoxin senzitivní (TTX-S) a tetrodotoxin rezistentní 
(TTX-R)127–129).
Zásadní otázkou pro účinnost TTX jako analgetika jsou role 
TTX-R a TTX-S kanálů při přenosu signálu v nocicepční 
dráze130, 131). Studie na potkanech ukázaly, že TTX-S  jsou 
zcela klíčové pro propagaci signálu v  C i Aδ vláknech 
(tenká vlákna vedoucí informace o bolesti a teplotě), za-
tímco TTX-R jsou významněji zastoupeny pouze na tě-
lech neuronů a periferních zakončeních C vláken a jejich 
přítomnost není pro šíření akčního potenciálu nutná132, 133). 
Jiné studie ale přikládají TTX-R kanálům mnohem větší 
význam134). Zdá se, že z funkčního pohledu jsou TTX-R 
důležité např. pro vnímání bolesti při nízkých teplotách135).

Vidarabin (adenin arabinosid, ara-A)

Počátek historie využití vidarabinu (a  cytarabinu) sahá 
až k přelomu čtyřicátých a padesátých let 20. století, kdy 
Werner Bergmann s  kolegy poprvé izoloval spongonu-
kleosidy – spongothymidin a spongouridin – z houbovce 
Tectitethya crypta82, 101). Vidarabin je syntetický analog 
spongouridinu101).
Jeho antivirotické působení pak zaznamenali Privat de 
Garilhe a De Rudder už v roce 1964101, 102). Mechanismem 
jeho účinku je kompetitivní inhibice DNA polymerázy, 
která zabrání viru v replikaci103). 
V  USA byl vidarabin registrován od roku 1976 a  jeho 
prodej byl ukončen v červnu 2001 z ekonomických dů-
vodů, jelikož byl postupně „vytlačován” novějšími anti-
virotiky11).
To ale pro vidarabin nemusí znamenat definitivní konec. 
Studie na myších ukázaly, že vidarabin funguje jako 
relativně selektivní inhibitor adenylyl cyklázy 5 (AC5) 
a  zpomaluje progresi poinfarktového srdečního selhá-
ní104). AC5 je (spolu s AC6) hlavní izoformou adenylyl 
cyklázy v  srdci. Myši s  knock-outovaným genem pro 
AC5 žijí déle, mají nižší riziko rozvoje diabetes mellitus 
a obezity a lépe snášejí zátěž105). Vidarabin by snad mohl 
vyvolávat podobné účinky bez nutnosti zásahu do geno-
mu či genové exprese. Ve studii na prasatech bylo dále 
zaznamenáno zmenšení infarktového ložiska po koronár-
ní obstrukci u  skupiny, jíž byl podán vidarabin (oproti 
vehikulu). Navíc se ukázalo, že ke zmenšení ložiska do-
šlo i v případě, že byl vidarabin podán až po reperfuzi 
koronárních arterií. To má velký význam pro kliniku, kdy 
nelze s obnovením průtoku otálet. Adenosin, se kterým 
byl vidarabin porovnáván, snižoval velikost ložiska, po-
kud byl podán před reperfuzí, ke zmenšení ložiska po re-
perfuzi bylo potřeba podat pětinásobnou dávku. Vysoké 
dávky adenosinu však v  tomto případě nejsou vhodné, 
jelikož vedou ke snížení systolického tlaku. U vidarabinu 
nebyl významný vliv na tlak zaznamenán106).
Studie na psech s pacingem-indukovanou dilatační kar-
diomyopatií ukázala působení vidarabinu proti progresi 
systolické dysfunkce, apoptóze kardiomyocytů a srdeční 
intersticiální fibróze107).

Lurbinectedin (PM01183)

Lurbinectedin je syntetický alkaloid strukturně příbuzný 
trabectedinu. Podobně jako on se váže do malého žlábku 
DNA, působí vznik dvojřetězcových zlomů, blok buňky 
v S fázi a následnou apoptózu108, 109). Rovněž působí re-
dukci počtu TAM (tumor associated macrophages – viz 
trabectedin)110). Preklinicky vykazoval protinádorovou 
aktivitu in vitro i  in vivo108, 109, 111), klinická studie fáze 
I pro terapii pokročilých solidních nádorů pak prokázala 
jeho dobrou toleranci i aktivitu112). V současnosti probí-
hají např. studie fáze III pro terapii ovariálního karcino-
mu s  rezistencí na platinu (studie113), studie fáze II pro 
terapii metastatických či neresekovatelných sarkomů114) 
a s BRCA 1/2 asociovaného nebo metastatického karci-
nomu prsu115).

Čtverzubec rudoploutvý (Takifugu rubripes)
Systematické zařazení:
Říše: Živočichové (Animalia)
Kmen: Strunatci (Chrodata)
Třída: Paprskoploutví (Actinopterygii)
Řád: Čtverzubci (Tetraodontiformes)
Čeleď: Čtverzubcovití (Tetraodontidae)
Rod: Čtverzubec (Takifugu)

Rozšíření: Západní oblasti Japonského, Východočínského a Žlutého 
moře až po Hokkaidó.
Ohrožení: Dle Červeného seznamu IUCN se tento druh blíží stavu 
ohrožení (NT – near threatened), hlavně díky intenzivnímu lovu. 
Způsob života: Počátky života stráví čtverzubci v brakických vodách 
poblíž říčních ústí. Dospělci žiji na volném moři v hloubkách do 
200 metrů. 

I když byl tetrodotoxin izolován i z řady dalších živočichů, nejvíce 
ho proslavil právě čtverzubec neboli fugu, rybí specialita oblíbená 
zejména v  japonské gastronomii. Nejjedovatější částí ryby jsou 
ovaria, játra a  střeva. Mimo kuchyni ale našel čtverzubec využití 
i v genetice, díky svému malému a dobře konzervovanému genomu 
se uplatňuje jako modelový organismus.

Zdroje boxu:
Hutchins M., Thoney D. A., Loiselle P. V., Schlager N. 
Grzimek’s  Animal Life Encyclopedia, 2nd edition. Volumes 4–5, 
Fishes I–II. Farmington Hills, MI: Gale Group 2003.
IUCN. http://www.iucnredlist.org/details/193612/0 (30. 5. 2017)
Fugu Genome Project. http://www.fugu-sg.org/ (30. 5. 2017)
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žlázy160) či karcinomu prsu159). V klinických studiích fáze 
I a II se potvrdila jeho aktivita u pokročilého melanomu 
(v kombinaci s dakarbazinem163), refrakterního či relabu-
jícího mnohočetného myelomu164) nebo neresekabilního 
pokročilého renálního karcinomu165), výsledky ale nejsou 
ohromující. Podobně plitidepsin neukázal nikterak „zá-
zračné” účinky – např. u  myelofibrózy166), pokročilého 
či metastatického karcinomu z buněk přechodního epite-
lu167) nebo u malobuněčného karcinomu plic168). Nicméně 
se jedná o velmi zajímavou látku z hlediska unikátního 
mechanismu působení na sekreci VEGF.
Kalahalid F je cyklický depsipeptid izolovaný z měk-
kýše Elysia rufescens a zelených řas, kterými se živí169). 
V preklinických studiích ukázal slibnou cytotoxickou ak-
tivitu např. na buňkách karcinomu prsu či prostaty170, 171). 
Mechanismem jeho účinku je pravděpodobně narušení 
organel buňky, vznik osmotické dysbalance a smrt buněk 
onkózou170). Studie fáze II využití kalahalidu F v terapii 
pokročilého maligního melanomu sice ukázala dobrý 
bezpečnostní profil, nicméně byla ukončena pro nedosta-
tečnou protinádorovou aktivitu172).
Elisidepsin (PM02734) je syntetický cyklický peptid od-
vozený od kalahalidu F. I on vykazoval slibné výsledky 
preklinicky173), ve studii fáze Ib/II pro terapii metastatické-
ho či pokročilého gastroezofageálního karcinomu (studie 
IMAGE) měl však jen nízkou účinnost174). 	 Mezi další 
farmakologicky zajímavé cyklické depsipeptidy izolova-
né z mořských organismů dále patří např. neamphamid 
A  izolovaný z houbovce Neamphius huxleyi, s  anti-HIV 
aktivitou in vitro175), neamphamid B izolovaný z  jiného 
houbovce Neamphius sp., s antimykobakteriální aktivitou 
in vitro176) a celá řada dalších.

Skvalamin laktát

Skvalamin byl poprvé izolován ze žraloka ostrouna 
obecného (Squalus acanthias)177). Ačkoliv jeho objevi-
telé popisují zejména jeho antibiotické působení, poz-
ději zaujal spíše svým antiangiogenetickým a protiná-
dorovým potenciálem178, 179). V klinické studii fáze I/IIA 
využití skvalamin laktátu v terapii pokročilého nemalo-
buněčného karcinomu plic (v  kombinaci s  karboplati-
nou a paklitaxelem) určitý potenciál ukázal180), výsled-
ky studií fáze II zkoumající vliv skvalamin laktátu na 
proliferativní diabetickou retinopatii181) a neovaskulární 
věkem podmíněnou makulární degeneraci182) zatím ne-
byly zveřejněny.

DMXBA 
(GTS-21, 3-(2,4-dimethoxybenzyliden)-anabasein)

DMXBA je syntetický analog anabaseinu, nikotinového 
alkaloidu poprvé izolovaného z mořské pásnice Amphi-
porus lactifloreus183), přítomný je ale např. i u některých 
druhů mravenců rodu Aphaenogaster184) a dalších živo-
čichů. 
Anabasein je neselektivní agonista nikotinových recep-
torů pro acetylcholin, preferenčně ale stimuluje podtyp 
receptorů v  kosterním svalstvu a  α7 podtyp v  mozku. 

V  Kanadě proběhla studie III. fáze s  tetrodotoxinem 
pro léčbu nádorové bolesti, data však zatím nebyla 
zveřejněna136). V  USA byla předčasně ukončena II. 
fáze klinického testování (na základě průběžné analý-
zy dat, zdá se, že výzkum bude pokračovat studií III. 
fáze) pro terapii chemoterapií indukované neuropatic-
ké bolesti137). 

Glembatumumab vedotin (CDX-011)

Glembatumumab vedotin je konjugát protilátky anti-
gpNMB (glycoprotein nonmetastatic melanoma B, též 
osteoactivin, DC-HIL) a  monomethyl auristatinu E138). 
GpNMB je zvýšeně exprimován v  řadě malignit, např. 
některých typech melanomu139, 140), gliomu141), karcinomu 
prsu142), osteosarkomu143) či nemalobuněčném karcinomu 
plic144).
Exprese gpNMB v těchto tumorech zřejmě potencuje in-
vazivní a metastatické chování141, 144).
Studie glembatumumabu vedotinu fáze I/II145) a 146) uká-
zaly poměrně dobrou snášenlivost a  účinnost v  terapii 
karcinomu prsu (30 % ORR (overall response rate) u pa-
cientů se zvýšenou expresí gpNMB ve více než 25 % 
nádorových buněk – studie EMERGE). Další studie fáze 
II – METRIC (Metastatic triple-negative breast cancer) 
právě probíhá147). 
Studie fáze I/II ukázaly možnost budoucího využití pro 
terapii pokročilého melanomu138).
Dále probíhají studie pro využití v  terapii pokročilého 
malobuněčného karcinomu plic (NCT02713828), os-
teosarkomu (NCT02487979) a  uveálního melanomu 
(NCT02363283).

Cyklické depsipeptidy

Jedná se o  polypeptidy, ve kterých je nejméně jedna 
aminokyselina nahrazena hydroxykyselinou, což vede 
ke vzniku nejméně jedné esterové vazby v  cyklu. Tato 
skupina látek, z nichž některé byly izolovány z mořských 
organismů, má velmi rozmanité spektrum účinků148).
Didemnin B je cyklický depsipeptid poprvé izolovaný 
ze sumky Trididemnum solidum149). V buňkách pravdě-
podobně působí inhibici syntézy DNA a  proteinů, což 
vede k zástavě jejich růstu149, 150). Preklinicky vykazoval 
slibnou aktivitu proti řadě nádorů151), v několika klinic-
kých studiích však ztroskotal kvůli slabým výsledkům 
a závažné toxicitě152–155).
Plitidepsin (aplidin, dehydrodidemnin B) byl poprvé 
izolován ze sumky Aplidium albicans156). Mechanismus 
jeho působení je zřejmě komplexní. V  buňkách vyvo-
lává dlouhodobou aktivaci signálních kináz JNK a p38 
MAPK, významnou úlohu zřejmě hraje abnormální 
aktivace EGFR, indukce oxidativního stresu a  deple-
ce glutathionu157–159). Účinně blokoval buňky v  G1 fázi 
i v přítomnosti mutované TP53160). Dále má zřejmě vliv 
na angiogenezi zásahem do sekrece VEGF157, 161) či pří-
mým působením na endoteliální buňky162).
V preklinických studiích vykazoval protinádorovu aktivi-
tu např. na buněčných liniích AML161), karcinomu štítné 
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Bryostatin-1

Je látka (chemicky se jedná o  makrocyklický lakton) 
poprvé izolovaná z  Bugula neritina, mořského živoči-
cha z  kmene mechovců207). Analýza genových clusterů 
a další indicie ale svědčí pro mikrobiální původ, a to ze 
symbiotického mikroorganismu Candidatus Endobugula 
sertula208, 209). Bryostatin vykazuje velmi rozmanité účin-
ky210, 211). Hlavním mechanismem jeho působení (pravdě-
podobně ne jediným) je vazba do vazebného místa pro 
diacylglycerol (DAG) na proteinkinase C (PKC), která 
vyvolá její aktivaci212). Na rozdíl od např. forbol esterů 
(které také fungují jako aktivátory PKC) ale nepůsobí 
jako tumor promoter213). 
PKC funguje jako ústřední regulátor růstu a diferenciace 
buňky213, 214) a protinádorové působení je jedním z účinků 
bryostatinu. Přesný mechanismus nebyl zatím objasněn, 
zřejmě však bude vícesložkový215), uplatňuje se např. 
defosforylace cyklin-dependentní kinázy 2216), uvolnění 
TNF-α217) či modulace imunitního systému218).
Izoformy PKC mají dále zásadní vliv na správné fun-
gování paměťových funkcí a  jejich poruchy patří mezi 
první abnormality objevující se v mozku pacientů trpí-
cích Alzheimerovou chorobou219, 220). Snížená aktivita 
PKC pravděpodobně souvisí i s depresí221, 222). Bryostatin 
prokázal antidepresivní účinek a vliv na zlepšení paměti 
u potkanů223). Klinická studie fáze II využití bryostatinu 
pro terapii středně těžké a těžké Alzheimerovy choroby 
právě probíhá224).
Působení bryostatinu na PKC vede i k reaktivaci latent-
ního HIV-1225, 226), tento účinek by snad v budoucnu mohl 
najít využití v terapii HIV, kde tyto rezervoáry latentního 
viru představují závažný terapeutický problém. Bryosta-
tin navíc působí dočasné snížení exprese CD4 a CXCR4 
na T buňkách 225, 227). Klinická studie fáze I  zkoumající 
využití bryostatinu pro reaktivaci latentního viru u pa-
cientů léčených antiretrovirovou terapií sice neprokázala 
vliv bryostatinu na aktivitu PKC ani reaktivaci latentního 
viru, problémem však mohly být příliš nízké plazmatické 
koncentrace228).
Co se týče protinádorového působení bryostatinu, pro-
běhla od devadesátých let 20. století celá řada studií. Zdá 

DMXBA je selektivní agonista právě pro α7 podtyp ni-
kotinových receptorů185). Tyto receptory se nachází na 
neuronech jak presynapticky, tak postsynapticky186, 187) 
a představují zajímavý terapeutický cíl zejména pro te-
rapii schizofrenie188–191) a  Alzheimerovy choroby192, 193). 
Tvorba acetylcholinu a exprese cholinergních receptorů 
však rozhodně není výsadou neuronů, acetylcholin i jeho 
receptory můžeme najít téměř ve všech buňkách lidské-
ho těla194). Příkladem za všechny budiž role acetylcholinu 
jako mediátoru cholinergní antiinflamatorní cesty/refle-
xu, komunikace nervového a imunitního systému, která 
má významný vliv na regulaci zánětlivých procesů195). 
Studie in vitro196) i  na myších197) na toto možné antiin-
flamatorní působení DMXBA ukazují, v pilotní studii na 
lidech však prokázáno nebylo198).
Co se týče terapie Alzheimerovy choroby, preklinické 
studie ukazují, že samotná vazba agonisty na α7 cho-
linergní receptor chrání neurony před Aβ mediovanou 
cytotoxicitou199–201). DMXBA navíc v  pilotní studii na 
zdravých dobrovolnících ukázal vliv na zlepšení kogni-
tivních funkcí (pozornosti, pracovní paměti a sekundární 
epizodické paměti)202).
K  prokazatelnému zlepšení kognitivních funkcí došlo 
i v pilotní studii využití DMXBA pro terapii schizofre-
nie203). Ve studii fáze II tento vliv na kognici pozoro-
ván nebyl, došlo ale ke zlepšení negativních symptomů 
schizofrenie (hodnoceno na stupnici SANS, zohledňu-
jící mimo jiné anhedonii, apatii či poruchy pozornos-
ti)204). 
Klinické studie pro terapii Alzheimerovy choroby205) 
a ADHD206) zůstávají zatím bez publikovaných výsledků.

Ostroun obecný (Squalus acanthias)
Systematické zařazení:
Říše: živočichové (Animalia)
Kmen: strunatci (Chordata)
Třída: paryby (Chondrichthyes)
Řád: ostrouni (Squaliformes)
Čeleď: ostrounovití (Squalidae)
Rod: ostroun (Squalus)

Rozšíření: Poměrně široce rozšířen, obývá vody mírného až 
subarktického pásu v Atlantickém a Tichém oceánu. Preferuje 
zejména šelfové vody v blízkosti pobřeží.
Ohrožení: Dle Červeného seznamu IUCN jde o zranitelný druh 
(vulnerable – VU).
Způsob života: Ostrouni jsou menší žraloci dorůstající délky 1 až 
1,5 metru. Migrují v hejnech na poměrně velké vzdálenosti. Dožívají 
se až 100 let a samci pohlavně dozrávají okolo 11. roku, samice 
později, kolem 18.–21. roku. To spolu s jejich dlouhým gestačním 
obdobím vede k velmi nízkému populačnímu růstu a zranitelnosti 
ostrounů nadměrným rybolovem. V severovýchodním Atlantiku již 
došlo k poklesu populace o více než 95 %, a proto je lze v této oblasti 
považovat za kriticky ohrožené.

Zdroje boxu:	
Hutchins M., Thoney D. A., Loiselle P. V., Schlager N. Grzimek’s 
Animal Life Encyclopedia, 2nd edition. Volumes 4–5, Fishes I–II. 
Farmington Hills, MI: Gale Group 2003.
Hanel L., Novák J. České názvy živočichů. V, Ryby a rybovití 
obratlovci (pisces). Praha: Národní muzeum 2000. 
IUCN. http://www.iucnredlist.org/details/91209505 (30. 5. 2017)

Mechovci (Bryozoa)
Systematické zařazení:
Říše: živočichové (Animalia)
Kmen: mechovci (Bryozoa)

Způsob života: Jedná se o mořské i sladkovodní koloniální živočichy. 
Jednotliví zooidi jsou obvykle menší než 1 mm. Potravu si do úst 
přihánějí pohybem brv na chapadélkách obklopujících ústní otvor. 
Podobně jako např. houbovci se živí mikroorganismy a  drobným 
organickým detritem. Kolonie mohou být monomorfní, tedy tvořeny 
jedním typem zooidů, či polymorfní, kde jsou zooidi tvarově 
a  funkčně specializováni. Kolonie se obvykle rozrůstají pučením, 
z hlediska pohlavního rozmnožování se jedná o hermafrodity. Larva 
je obrvená a pohyblivá.

Zdroje boxu:	
Sedlák E. Zoologie bezobratlých. 2., přepracované vydání. Brno: 
Masarykova univerzita 2002.
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In vitro vykazoval marizomib účinnost proti nádorovým 
buňkám mnohočetného myelomu245), karcinomu tlustého 
střeva249) či chronické250) a akutní leukemie251).
V klinické studii fáze I v kombinaci s vorinostatem (inhi-
bitor histon-deacetylasy) u pacientů s melanomem, kar-
cinomem slinivky či plic byla zjištěna dobrá snášenlivost 
a  synergická protinádorová aktivita s  vorinostatem252). 
I studie fáze I pro terapii relabovaného či relabovaného 
a  refrakterního mnohočetného myelomu došly k naděj-
ným výsledkům253, 254) a další studie fáze I/II pro tuto indi-
kaci měla proběhnout, její stav je však nejasný255). V po-
čátcích jsou i studie fáze I využití marizomibu v terapii 
maligního gliomu256, 257).

Závěr

Látky, o kterých tento článek pojednává, jsou rozmanité 
jak chemicky, tak i  svým působením na lidský organi-
smus. Jejich jediným pojítkem je původ organismů, ze 
kterých byly poprvé izolovány. Hodnota této informace 
pro klinickou praxi je zřejmě zanedbatelná, ale inspirace 
přírodními látkami hraje bezpochyby zcela zásadní úlohu 
ve vývoji nových léčiv. Moře a jeho obyvatelé představu-
jí bohatý zdroj nových molekul s biologickou aktivitou, 
jsou ovšem ohrožováni celou řadou vlivů, ať už mluvíme 
o  oteplování, znečištění, nevhodných způsobech těžby 
a lovu či mnoha dalších faktorech. Opomenout nelze ani 
význam působení samotných farmak, jejich metabolitů 
a odpadních látek vznikajících při jejich výrobě na život-
ní prostředí. Poškozování křehkých ekosystémů, úbytek 
druhů a pokles biodiverzity, vznikající jako možný násle-
dek těchto jevů, znamená i  úbytek potenciálně zajíma-
vých látek, jež tyto organismy vytvářejí. Blednutí korálo-
vých útesů, představující jeden z nejznámějších projevů 
tohoto fenoménu, tak není jen ztrátou plejády pestroba-
revných korálů, ryb či korýšů, ale i celé řady potenciál-
ních léčiv. A je to právě tato vzájemná blízkost farmako-
logie a ekologie, zásadní vztah ochrany přírody a vývoje 
budoucích léčiv, jež dává tomuto tématu význam. Jde 
samozřejmě jen o jeden ze střípků v rozsáhlé a mnohem 
složitější mozaice vzájemných souvislostí, nicméně jde 
o střípek, který by neměl být přehlédnutý.

Použité zkratky
ADHD		  attention deficit hyperactivity disorder
DMXBA	 3-(2,4-dimethoxybenzyliden)
		  -anabasein
EMT		  epithelial-mesenchymal transition
FDA		  Food and Drug Administration
IUCN		  International Union for Conservation 
		  of Nature
MET		  mesenchymal-epithelial transition
MMAE		  monomethyl auristatin E
NER		  nucleotide Excision Repair
NF-κB		  nukleární faktor kappa B
SPC		  summary of product characteristics
TAM		  tumor associated macrophages
TTX		  tetrodotoxin
VEGF		  vascular endothelial growth factor

se, že protinádorový účinek samotného bryostatinu je příliš 
slabý, ukázal však účinnost v kombinaci s jinými protiná-
dorovými léky210). Účinná byla např. kombinace s paklita-
xelem v terapii pokročilého gastrického adenokarcinomu 
nebo karcinomu gastroezofagealní junkce (lepší výsledek 
než monoterapie paklitaxelem229)) či kombinace s vinkris-
tinem pro terapii relapsu agresivního non-Hodgkinova 
lymfomu po autologní transplantaci kmenových buněk230). 
Naopak úspěch nepřinesly např. kombinace s paklitaxelem 
pro terapii pokročilého karcinomu pankreatu231) či kombi-
nace s cisplatinou pro terapii pokročilého či rekurentního 
karcinomu děložního hrdla232). Větší naději na klinické vy-
užití v terapii nádorů snad budou mít analoga bryostatinu 
(bryologa), např. picolog233).
Dle výzkumu na potkanech by bryostatin mohl snižovat 
poškození mozku při ischemii a  prodlužovat okno pro 
podání trombolytické terapie234, 235). Navíc v  této situaci 
zřejmě působí protektivně na paměťové funkce (retro-
grádní i anterográdní)236).

Plinabulin (NPI-2358)

Plinabulin je syntetický analog diketopiperazinu fe-
nylahistinu (rovněž halimidu)237), izolovaného z  moř-
ských238) i  suchozemských239) zástupců hub rodu Asper-
gillus. V in vitro studiích vykazoval protinádorovou ak-
tivitu spojenou s disruptivním vlivem na cévní stěnu237). 
Klinické studie fáze I potvrdily toleranci a ukázaly i slib-
nou aktivitu240, 241).

Marizomib (salinosporamid A, NPI-0052)

Marizomib je proteasomový inhibitor, poprvé izolova-
ný z mořské aktinomycety rodu Salinispora242). Inhibice 
proteasomu působí protinádorově a proapoptoticky kom-
plexním mechanismem. Proteolýza hraje nezastupitelnou 
roli v  řízení buněčného cyklu, např. regulací množství 
aktivátorů či inhibitorů CDK243). Dalším aspektem je hro-
madění poškozených proteinů, které sami o sobě působí 
proapoptoticky a  ke kterému jsou nádorové buňky ná-
chylnější díky nižší genetické stabilitě a rychlejší proli-
feraci244). 
Na rozdíl od bortezomibu (dalšího proteasomového in-
hibitoru, v  současnosti registrovaného např. pro terapii 
mnohočetného myelomu), marizomib inhibuje všechny 
tři podjednotky proteasomu: chymotrypsinu-podobnou 
(CT-L), trypsinu podobnou (T-L) a  kaspáze-podobnou 
(C-L)245). 
Marizomib působí i inhibici aktivace NF-κB245, 246), který 
hraje významnou úlohu v  iniciaci a progresi nádorové-
ho růstu247). K  inhibici aktivace NF-κB zřejmě dochází 
inhibicí degradace jeho regulátoru IκB247). I bortezomib 
vyvolává inhibici dráhy NF-κB, ale zdá se, že jen v ně-
kterých buňkách (např. ve stromálních buňkách kostní 
dřeně), v buňkách mnohočetného myelomu naopak vy-
volává jeho aktivaci. Cytotoxicita bortezomibu tedy 
zřejmě není závislá na inaktivaci NF-κB248). Marizomib 
a bortezomib působily ve studiích na nádorových liniích 
synergicky245, 246).
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