Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study

Autoři: Matias C. Vieira aff001;  Sophie Relph aff001;  Martina Persson aff003;  Paul T. Seed aff001;  Dharmintra Pasupathy aff001
Působiště autorů: Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom aff001;  Department of Obstetrics and Gynaecology, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil aff002;  Department of Medicine, Solna, Clinical Epidemiology Unit, Karolinska Institutet, Stockholm, Sweden aff003
Vyšlo v časopise: Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study. PLoS Med 16(9): e32767. doi:10.1371/journal.pmed.1002902
Kategorie: Research Article
doi: 10.1371/journal.pmed.1002902



Although many studies have compared birth-weight charts to determine which better identify infants at risk of adverse perinatal outcomes, less attention has been given to the threshold used to define small or large for gestational age (SGA or LGA) infants. Our aim was to explore different thresholds associated with increased risk of adverse perinatal outcomes using population, customised, and Intergrowth centile charts.

Methods and findings

This is a population-based cohort study (Swedish Medical Birth Registry), which included term singleton births between 2006 and 2015 from women with available data on first-trimester screening. Population, customised, and Intergrowth charts were studied. Outcomes included cesarean section, postpartum haemorrhage, severe perineal tear, Apgar score at 5 minutes, neonatal morbidity, and perinatal mortality. Odds for each outcome were assessed in intervals of 5 centiles of birth weight (reference being 40th–60th centiles) using logistic regression. Intervals of 5% of the population were also explored. Sensitivity for fixed false-positive rates (FPRs) was reported for neonatal outcomes. Data from 212,101 births were analysed. Mean age was 33 ± 5 years, 48% of women were nulliparous, and 80% were born in Sweden. Prevalence of SGA (<10th centile) was 10.1%, 10.0%, and 3.1%, and prevalence of LGA (>90th centile) was 10.0%, 8.2%, and 25.1%, assessed using population, customised, and Intergrowth charts, respectively. In small infants, the risk of perinatal mortality was consistently increased below the 15th, 10th, and 35th birth-weight centiles for the respective charts (odds ratio [OR] 1.59, 95% confidence interval [CI] 1.05–2.39, p = 0.03 for 10th–15th population centile; OR 2.54, 95% CI 1.74–3.71, p < 0.001 for 5th–10th customised centile; OR 1.81, 95% CI 1.07–3.04, p = 0.03 for 30th–35th Intergrowth centile). The strength of association with adverse perinatal outcomes was different between infants below the 5th birth-weight centile for each chart (OR 4.47, 95% CI 3.30–6.04, p < 0.001 for the population chart; OR 5.78, 95% CI 4.22–7.91, p < 0.001 for the customised chart; OR 10.74, 95% CI 7.32–15.77, p < 0.001 for the Intergrowth chart) but similar in the smallest 5% of the population (OR 4.34, 95% CI 3.22–5.86, p < 0.001 for the population chart; OR 5.23, 95% CI 3.85–7.11, p < 0.001 for the customised chart; OR 4.69, 95% CI 3.47–6.34, p < 0.001 for the Intergrowth chart). For a fixed FPR of 10%, different thresholds for each chart achieved similar sensitivity for perinatal mortality in small infants (29% for all charts). Similar behaviour of different thresholds and similar risk/sensitivity for fixed FPR were observed in relation to other outcomes and for LGA infants. Limitations of this study include the relative homogeneity of the Swedish population, which limits generalisability to other populations; customised centiles may perform differently in populations with increased heterogeneity of ethnic background.


The risk of adverse outcomes was consistent across proportions of the population but did not reflect fixed thresholds, such as the 10th or 90th centiles, across different growth charts. Chart-specific thresholds for the population should be considered in clinical practice.

Klíčová slova:

Computer and information sciences – Data visualization – Infographics – Charts – Medicine and health sciences – Health care – Health statistics – Morbidity – Surgical and invasive medical procedures – Obstetric procedures – Cesarean section – Body weight – Women's health – Maternal health – Birth – Labor and delivery – Postpartum hemorrhage – Obstetrics and gynecology – Critical care and emergency medicine – Severe blood loss – Diagnostic medicine – Signs and symptoms – Pathology and laboratory medicine – Hemorrhage – Vascular medicine – Biology and life sciences – Developmental biology – Neonates – Physiology – Physiological parameters – Birth weight – People and places – Geographical locations – Europe – European Union – Sweden


1. Sjaarda LA, Albert PS, Mumford SL, Hinkle SN, Mendola P, Laughon SK. Customized large-for-gestational-age birthweight at term and the association with adverse perinatal outcomes. Am J Obstet Gynecol. 2014;210(1):63.e1–63.e11.

2. Gardosi J, Francis A. Adverse pregnancy outcome and association with small for gestational age birthweight by customized and population-based percentiles. Am J Obstet Gynecol. 2009;201(1):28.e1–8.

3. Iliodromiti S, Mackay DF, Smith GC, Pell JP, Sattar N, Lawlor DA, et al. Customised and Noncustomised Birth Weight Centiles and Prediction of Stillbirth and Infant Mortality and Morbidity: A Cohort Study of 979,912 Term Singleton Pregnancies in Scotland. PLoS Med. 2017;14(1):e1002228. doi: 10.1371/journal.pmed.1002228 28141865

4. Bukowski R, Hansen NI, Willinger M, Reddy UM, Parker CB, Pinar H, et al. Fetal growth and risk of stillbirth: a population-based case-control study. PLoS Med. 2014;11(4):e1001633. doi: 10.1371/journal.pmed.1001633 24755550

5. Pasupathy D, McCowan LM, Poston L, Kenny LC, Dekker GA, North RA. Perinatal outcomes in large infants using customised birthweight centiles and conventional measures of high birthweight. Paediatr Perinat Epidemiol. 2012;26(6):543–52. doi: 10.1111/ppe.12002 23061690

6. Longo S, Bollani L, Decembrino L, Di Comite A, Angelini M, Stronati M. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonatal Med. 2013;26(3):222–5. doi: 10.3109/14767058.2012.715006 23030765

7. Yu ZB, Han SP, Zhu GZ, Zhu C, Wang XJ, Cao XG, et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes Rev. 2011;12(7):525–42. doi: 10.1111/j.1467-789X.2011.00867.x 21438992

8. Gardosi J, Francis A. Customised Weight Centile Calculator. GROW v8.0.1. Gestation Network; 2018 [cited 2019 Aug 30].

9. Ego A, Subtil D, Grange G, Thiebaugeorges O, Senat MV, Vayssiere C, et al. Customized versus population-based birth weight standards for identifying growth restricted infants: a French multicenter study. Am J Obstet Gynecol. 2006;194(4):1042–9. doi: 10.1016/j.ajog.2005.10.816 16580294

10. Hutcheon JA, Zhang X, Cnattingius S, Kramer MS, Platt RW. Customised birthweight percentiles: does adjusting for maternal characteristics matter? BJOG. 2008;115(11):1397–404. doi: 10.1111/j.1471-0528.2008.01870.x 18823489

11. Sovio U, Smith GCS. The effect of customization and use of a fetal growth standard on the association between birthweight percentile and adverse perinatal outcome. Am J Obstet Gynecol. 2018;218(2S):S738–S44. doi: 10.1016/j.ajog.2017.11.563 29199029

12. Anderson NH, Sadler LC, McKinlay CJ, McCowan LM. INTERGROWTH-21st vs customized birthweight standards for identification of perinatal mortality and morbidity. Am J Obstet Gynecol. 2016;214(4):509.e1–509.e7.

13. Francis A, Hugh O, Gardosi J. Customized vs INTERGROWTH-21(st) standards for the assessment of birthweight and stillbirth risk at term. Am J Obstet Gynecol. 2018;218(2S):S692–S9. doi: 10.1016/j.ajog.2017.12.013 29422208

14. Liu S, Metcalfe A, Leon JA, Sauve R, Kramer MS, Joseph KS, et al. Evaluation of the INTERGROWTH-21st project newborn standard for use in Canada. PLoS ONE. 2017;12(3):e0172910. doi: 10.1371/journal.pone.0172910 28257473

15. Ganzevoort W, Thilaganathan B, Baschat A, Gordijn SJ. Point. Am J Obstet Gynecol. 2019;220(1):74–82.

16. Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):857–68. doi: 10.1016/S0140-6736(14)60932-6 25209487

17. Zhang J, Merialdi M, Platt LD, Kramer MS. Defining normal and abnormal fetal growth: promises and challenges. Am J Obstet Gynecol. 2010;202(6):522–8. doi: 10.1016/j.ajog.2009.10.889 20074690

18. Stirnemann J, Villar J, Salomon LJ, Ohuma E, Ruyan P, Altman DG, et al. International estimated fetal weight standards of the INTERGROWTH-21(st) Project. Ultrasound Obstet Gynecol. 2017;49(4):478–86. doi: 10.1002/uog.17347 27804212

19. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806–8. doi: 10.1136/bmj.39335.541782.AD 17947786

20. Jolly MC, Sebire NJ, Harris JP, Regan L, Robinson S. Risk factors for macrosomia and its clinical consequences: a study of 350,311 pregnancies. Eur J Obstet Gynecol Reprod Biol. 2003;111(1):9–14. doi: 10.1016/s0301-2115(03)00154-4 14557004

21. Glinianaia SV, Rankin J, Pearce MS, Parker L, Pless-Mulloli T. Stillbirth and infant mortality in singletons by cause of death, birthweight, gestational age and birthweight-for-gestation, Newcastle upon Tyne 1961–2000. Paediatr Perinat Epidemiol. 2010;24(4):331–42. doi: 10.1111/j.1365-3016.2010.01119.x 20618722

22. Vangen S, Stoltenberg C, Skjaerven R, Magnus P, Harris JR, Stray-Pedersen B. The heavier the better? Birthweight and perinatal mortality in different ethnic groups. Int J Epidemiol. 2002;31(3):654–60. doi: 10.1093/ije/31.3.654 12055170

23. Francis JH, Permezel M, Davey MA. Perinatal mortality by birthweight centile. Aust N Z J Obstet Gynaecol. 2014;54(4):354–9. doi: 10.1111/ajo.12205 24731210

24. Vasak B, Koenen SV, Koster MP, Hukkelhoven CW, Franx A, Hanson MA, et al. Human fetal growth is constrained below optimal for perinatal survival. Ultrasound Obstet Gynecol. 2015;45(2):162–7. doi: 10.1002/uog.14644 25092251

25. Sovio U, White IR, Dacey A, Pasupathy D, Smith GCS. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet. 2015;386(10008):2089–97. doi: 10.1016/S0140-6736(15)00131-2 26360240

26. Sovio U, Moraitis AA, Wong HS, Smith GCS. Universal versus selective ultrasonography to screen for large for gestational age infants and associated morbidity. Ultrasound Obstet Gynecol. 2017. doi: 10.1002/uog.17491 28425156

27. Grantz KL, Hediger ML, Liu D, Buck Louis GM. Fetal growth standards: the NICHD fetal growth study approach in context with INTERGROWTH-21st and the World Health Organization Multicentre Growth Reference Study. Am J Obstet Gynecol. 2018;218(2S):S641–S55.e28. doi: 10.1016/j.ajog.2017.11.593 29275821

28. Persson M, Razaz N, Tedroff K, Joseph KS, Cnattingius S. Five and 10 minute Apgar scores and risks of cerebral palsy and epilepsy: population based cohort study in Sweden. BMJ. 2018;360:k207. doi: 10.1136/bmj.k207 29437691

Interní lékařství

Článek vyšel v časopise

PLOS Medicine

2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Deprese u dětí a adolescentů
nový kurz
Autoři: MUDr. Vlastimil Nesnídal

Konsenzuální postupy v léčbě močových infekcí

COVID-19 up to date
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D., MUDr. Mikuláš Skála, prof. MUDr. František Kopřiva, Ph.D., prof. MUDr. Roman Prymula, CSc., Ph.D.

Betablokátory a Ca antagonisté z jiného úhlu
Autoři: prof. MUDr. Michal Vrablík, Ph.D., MUDr. Petr Janský

Chronické žilní onemocnění a možnosti konzervativní léčby

Všechny kurzy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se