Protein-Protein interactions uncover candidate ‘core genes’ within omnigenic disease networks


Autoři: Abhirami Ratnakumar aff001;  Nils Weinhold aff001;  Jessica C. Mar aff002;  Nadeem Riaz aff001
Působiště autorů: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America aff001;  Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia aff002
Vyšlo v časopise: Protein-Protein interactions uncover candidate ‘core genes’ within omnigenic disease networks. PLoS Genet 16(7): e32767. doi:10.1371/journal.pgen.1008903
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008903

Souhrn

Genome wide association studies (GWAS) of human diseases have generally identified many loci associated with risk with relatively small effect sizes. The omnigenic model attempts to explain this observation by suggesting that diseases can be thought of as networks, where genes with direct involvement in disease-relevant biological pathways are named ‘core genes’, while peripheral genes influence disease risk via their interactions or regulatory effects on core genes. Here, we demonstrate a method for identifying candidate core genes solely from genes in or near disease-associated SNPs (GWAS hits) in conjunction with protein-protein interaction network data. Applied to 1,381 GWAS studies from 5 ancestries, we identify a total of 1,865 candidate core genes in 343 GWAS studies. Our analysis identifies several well-known disease-related genes that are not identified by GWAS, including BRCA1 in Breast Cancer, Amyloid Precursor Protein (APP) in Alzheimer’s Disease, INS in A1C measurement and Type 2 Diabetes, and PCSK9 in LDL cholesterol, amongst others. Notably candidate core genes are preferentially enriched for disease relevance over GWAS hits and are enriched for both Clinvar pathogenic variants and known drug targets—consistent with the predictions of the omnigenic model. We subsequently use parent term annotations provided by the GWAS catalog, to merge related GWAS studies and identify candidate core genes in over-arching disease processes such as cancer–where we identify 109 candidate core genes.

Klíčová slova:

Drug discovery – Genetic loci – Genetic networks – Genome-wide association studies – Mutation databases – Mutation detection – Protein interaction networks – Somatic mutation – Breast cancer – Cancers and neoplasms


Zdroje

1. Visscher P.M., et al., 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet, 2017. 101(1): p. 5–22. doi: 10.1016/j.ajhg.2017.06.005 28686856

2. Stranger B.E., Stahl E.A., and Raj T., Progress and promise of genome-wide association studies for human complex trait genetics. Genetics, 2011. 187(2): p. 367–83. doi: 10.1534/genetics.110.120907 21115973

3. Bush W.S. and Moore J.H., Chapter 11: Genome-wide association studies. PLoS Comput Biol, 2012. 8(12): p. e1002822. doi: 10.1371/journal.pcbi.1002822 23300413

4. Manolio T.A., Genomewide association studies and assessment of the risk of disease. N Engl J Med, 2010. 363(2): p. 166–76. doi: 10.1056/NEJMra0905980 20647212

5. Manolio T.A., et al., Finding the missing heritability of complex diseases. Nature, 2009. 461(7265): p. 747–53. doi: 10.1038/nature08494 19812666

6. Zuk O., et al., The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci U S A, 2012. 109(4): p. 1193–8. doi: 10.1073/pnas.1119675109 22223662

7. Eichler E.E., et al., Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet, 2010. 11(6): p. 446–50. doi: 10.1038/nrg2809 20479774

8. Lee S.H., et al., Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet, 2011. 88(3): p. 294–305. doi: 10.1016/j.ajhg.2011.02.002 21376301

9. Boyle E.A., Li Y.I., and Pritchard J.K., An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell, 2017. 169(7): p. 1177–1186. doi: 10.1016/j.cell.2017.05.038 28622505

10. Liu C., A case for Core Genes. J Psychiatry Brain Sci., 2017. 2(5). https://jpbs.hapres.com/UpLoad/PdfFile/jpbs_921.pdf

11. Wray N.R., et al., Common Disease Is More Complex Than Implied by the Core Gene Omnigenic Model. Cell, 2018. 173(7): p. 1573–1580. doi: 10.1016/j.cell.2018.05.051 29906445

12. Wang X., Gulbahce N., and Yu H., Network-based methods for human disease gene prediction. Brief Funct Genomics, 2011. 10(5): p. 280–93. doi: 10.1093/bfgp/elr024 21764832

13. Oti M., et al., Predicting disease genes using protein-protein interactions. J Med Genet, 2006. 43(8): p. 691–8. doi: 10.1136/jmg.2006.041376 16611749

14. Ideker T. and Sharan R., Protein networks in disease. Genome Res, 2008. 18(4): p. 644–52. doi: 10.1101/gr.071852.107 18381899

15. Chen M., Cho J., and Zhao H., Incorporating biological pathways via a Markov random field model in genome-wide association studies. PLoS Genet, 2011. 7(4): p. e1001353. doi: 10.1371/journal.pgen.1001353 21490723

16. Greene C.S., et al., Understanding multicellular function and disease with human tissue-specific networks. Nat Genet, 2015. 47(6): p. 569–76. doi: 10.1038/ng.3259 25915600

17. Califano A., et al., Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat Genet, 2012. 44(8): p. 841–7. doi: 10.1038/ng.2355 22836096

18. Creixell P., et al., Pathway and network analysis of cancer genomes. Nat Methods, 2015. 12(7): p. 615–621. doi: 10.1038/nmeth.3440 26125594

19. Horn H., et al., NetSig: network-based discovery from cancer genomes. Nat Methods, 2018. 15(1): p. 61–66. doi: 10.1038/nmeth.4514 29200198

20. Arking D.E., et al., Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet, 2014. 46(8): p. 826–36. doi: 10.1038/ng.3014 24952745

21. Lundby A., et al., Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics. Nat Methods, 2014. 11(8): p. 868–74. doi: 10.1038/nmeth.2997 24952909

22. Lee I., et al., Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res, 2011. 21(7): p. 1109–21. doi: 10.1101/gr.118992.110 21536720

23. Bergholdt R., et al., Integrative analysis for finding genes and networks involved in diabetes and other complex diseases. Genome Biol, 2007. 8(11): p. R253. doi: 10.1186/gb-2007-8-11-r253 18045462

24. Ragnedda G., et al., Protein-protein interaction analysis highlights additional loci of interest for multiple sclerosis. PLoS One, 2012. 7(10): p. e46730. doi: 10.1371/journal.pone.0046730 23094030

25. Liu Y., et al., Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma. Sci Rep, 2017. 7(1): p. 938. doi: 10.1038/s41598-017-01058-y 28428554

26. Cheng M., et al., Computational analyses of obesity associated loci generated by genome-wide association studies. PLoS One, 2018. 13(7): p. e0199987. doi: 10.1371/journal.pone.0199987 29966015

27. Rossin E.J., et al., Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet, 2011. 7(1): p. e1001273. doi: 10.1371/journal.pgen.1001273 21249183

28. Szklarczyk D., et al., STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res, 2015. 43(Database issue): p. D447–52. doi: 10.1093/nar/gku1003 25352553

29. Buniello A., et al., The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res, 2019. 47(D1): p. D1005–D1012. doi: 10.1093/nar/gky1120 30445434

30. Calabrese G.M., et al., Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Cell Syst, 2017. 4(1): p. 46–59 e4. doi: 10.1016/j.cels.2016.10.014 27866947

31. Hall J.M., et al., Linkage of early-onset familial breast cancer to chromosome 17q21. Science, 1990. 250(4988): p. 1684–9. doi: 10.1126/science.2270482 2270482

32. Miki Y., et al., A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 1994. 266(5182): p. 66–71. doi: 10.1126/science.7545954 7545954

33. Friedman L.S., et al., Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nat Genet, 1994. 8(4): p. 399–404. doi: 10.1038/ng1294-399 7894493

34. Kuchenbaecker K.B., et al., Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA, 2017. 317(23): p. 2402–2416. doi: 10.1001/jama.2017.7112 28632866

35. Goate A., et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 1991. 349(6311): p. 704–6. doi: 10.1038/349704a0 1671712

36. Murrell J., et al., A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science, 1991. 254(5028): p. 97–9. doi: 10.1126/science.1925564 1925564

37. Chartier-Harlin M.C., et al., Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature, 1991. 353(6347): p. 844–6. doi: 10.1038/353844a0 1944558

38. Dron J.S. and Hegele R.A., Genetics of Lipid and Lipoprotein Disorders and Traits. Curr Genet Med Rep, 2016. 4(3): p. 130–141. doi: 10.1007/s40142-016-0097-y 28286704

39. Burke A.C., et al., PCSK9: Regulation and Target for Drug Development for Dyslipidemia. Annu Rev Pharmacol Toxicol, 2017. 57: p. 223–244. doi: 10.1146/annurev-pharmtox-010716-104944 27575716

40. Engelender S., et al., Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet, 1999. 22(1): p. 110–4. doi: 10.1038/8820 10319874

41. Engelender S., et al., Organization of the human synphilin-1 gene, a candidate for Parkinson's disease. Mamm Genome, 2000. 11(9): p. 763–6. doi: 10.1007/s003350010123 10967135

42. Griffin E.A. Jr., Staknis D., and Weitz C.J., Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science, 1999. 286(5440): p. 768–71. doi: 10.1126/science.286.5440.768 10531061

43. Nishi M. and Nanjo K., Insulin gene mutations and diabetes. J Diabetes Investig, 2011. 2(2): p. 92–100. doi: 10.1111/j.2040-1124.2011.00100.x 24843467

44. Evans D., et al., Rare variants in the lipoprotein lipase (LPL) gene are common in hypertriglyceridemia but rare in Type III hyperlipidemia. Atherosclerosis, 2011. 214(2): p. 386–90. doi: 10.1016/j.atherosclerosis.2010.11.026 21159338

45. Landrum M.J., et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res, 2016. 44(D1): p. D862–8. doi: 10.1093/nar/gkv1222 26582918

46. Chen P., et al., Association of common PALB2 polymorphisms with breast cancer risk: a case-control study. Clin Cancer Res, 2008. 14(18): p. 5931–7. doi: 10.1158/1078-0432.CCR-08-0429 18794107

47. DeBoever C., et al., Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat Commun, 2018. 9(1): p. 1612. doi: 10.1038/s41467-018-03910-9 29691392

48. Heneghan A.F., Pierre J.F., and Kudsk K.A., JAK-STAT and intestinal mucosal immunology. JAKSTAT, 2013. 2(4): p. e25530. doi: 10.4161/jkst.25530 24416649

49. De Vries L.C.S., et al., The Future of Janus Kinase Inhibitors in Inflammatory Bowel Disease. J Crohns Colitis, 2017. 11(7): p. 885–893. doi: 10.1093/ecco-jcc/jjx003 28158411

50. Mead J.R., Irvine S.A., and Ramji D.P., Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med (Berl), 2002. 80(12): p. 753–69. https://link.springer.com/article/10.1007%2Fs00109-002-0384-9

51. Rinninger F., et al., Lipoprotein lipase mediates an increase in the selective uptake of high density lipoprotein-associated cholesteryl esters by hepatic cells in culture. J Lipid Res, 1998. 39(7): p. 1335–48. 9684736

52. Tate J.G., et al., COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res, 2019. 47(D1): p. D941–D947. doi: 10.1093/nar/gky1015 30371878

53. Chakravarty D., et al., OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol, 2017. 2017.

54. Wang Y., et al., Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res, 2020. 48(D1): p. D1031–D1041. doi: 10.1093/nar/gkz981 31691823

55. Lawrence M.S., et al., Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 2014. 505(7484): p. 495–501. doi: 10.1038/nature12912 24390350

56. Szklarczyk D., et al., The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017. 45(D1): p. D362–D368. doi: 10.1093/nar/gkw937 27924014

57. MacArthur J., et al., The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res, 2017. 45(D1): p. D896–D901. doi: 10.1093/nar/gkw1133 27899670

58. Quinlan A.R. and Hall I.M., BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010. 26(6): p. 841–2. doi: 10.1093/bioinformatics/btq033 20110278

59. Bastian M., Heymann S., and Jacomy M. Gephi: an open source software for exploring and manipulating networks. in International AAAI Conference on Web and Social Media 2009. AAAI Publications, Third International AAAI Conference on Weblogs and Social Media.

60. Fruchterman T.M. and Reingold E., Graph drawing by force‐directed placement. Journal of Software: Practice and Experience, 1991. 21(11): p. 1129–1164.

61. Liberzon A., et al., The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst, 2015. 1(6): p. 417–425. doi: 10.1016/j.cels.2015.12.004 26771021


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 7

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se