#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Oxygen systems to improve clinical care and outcomes for children and neonates: A stepped-wedge cluster-randomised trial in Nigeria


Autoři: Hamish R. Graham aff001;  Ayobami A. Bakare aff002;  Adejumoke I. Ayede aff002;  Amy Z. Gray aff001;  Barbara McPake aff004;  David Peel aff005;  Olatayo Olatinwo aff006;  Oladapo B. Oyewole aff002;  Eleanor F. G. Neal aff001;  Cattram D. Nguyen aff008;  Shamim A. Qazi aff010;  Rasa Izadnegahdar aff011;  John B. Carlin aff008;  Adegoke G. Falade aff002;  Trevor Duke aff001
Působiště autorů: Centre for International Child Health, University of Melbourne, MCRI, Royal Children’s Hospital, Parkville, Australia aff001;  Department of Paediatrics, University College Hospital, Ibadan, Nigeria aff002;  Department of Paediatrics, University of Ibadan, Ibadan, Nigeria aff003;  Nossal Institute for Global Health, University of Melbourne, Parkville, Australia aff004;  Ashdown Consultants, Hartfield, England aff005;  Biomedical Services, University College Hospital, Ibadan, Nigeria aff006;  Asia-Pacific Health, New Vaccines, MCRI, Royal Children’s Hospital, Parkville, Australia aff007;  Clinical Epidemiology and Biostatistics Unit, MCRI, Royal Children’s Hospital, Parkville, Australia aff008;  Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, Australia aff009;  Department of Maternal, Newborn, Child and Adolescent Health, World Health Organization, Geneva, Switzerland aff010;  Bill and Melinda Gates Foundation, Seattle, Washington, United States of America aff011
Vyšlo v časopise: Oxygen systems to improve clinical care and outcomes for children and neonates: A stepped-wedge cluster-randomised trial in Nigeria. PLoS Med 16(11): e1002951. doi:10.1371/journal.pmed.1002951
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1002951

Souhrn

Background

Improving oxygen systems may improve clinical outcomes for hospitalised children with acute lower respiratory infection (ALRI). This paper reports the effects of an improved oxygen system on mortality and clinical practices in 12 general, paediatric, and maternity hospitals in southwest Nigeria.

Methods and findings

We conducted an unblinded stepped-wedge cluster-randomised trial comparing three study periods: baseline (usual care), pulse oximetry introduction, and stepped introduction of a multifaceted oxygen system. We collected data from clinical records of all admitted neonates (<28 days old) and children (28 days to 14 years old). Primary analysis compared the full oxygen system period to the pulse oximetry period and evaluated odds of death for children, children with ALRI, neonates, and preterm neonates using mixed-effects logistic regression. Secondary analyses included the baseline period (enabling evaluation of pulse oximetry introduction) and evaluated mortality and practice outcomes on additional subgroups. Three hospitals received the oxygen system intervention at 4-month intervals. Primary analysis included 7,716 neonates and 17,143 children admitted during the 2-year stepped crossover period (November 2015 to October 2017). Compared to the pulse oximetry period, the full oxygen system had no association with death for children (adjusted odds ratio [aOR] 1.06; 95% confidence interval [CI] 0.77–1.46; p = 0.721) or children with ALRI (aOR 1.09; 95% CI 0.50–2.41; p = 0.824) and was associated with an increased risk of death for neonates overall (aOR 1.45; 95% CI 1.04–2.00; p = 0.026) but not preterm/low-birth-weight neonates (aOR 1.30; 95% CI 0.76–2.23; p = 0.366). Secondary analyses suggested that the introduction of pulse oximetry improved oxygen practices prior to implementation of the full oxygen system and was associated with lower odds of death for children with ALRI (aOR 0.33; 95% CI 0.12–0.92; p = 0.035) but not for children, preterm neonates, or neonates overall (aOR 0.97, 95% CI 0.60–1.58, p = 0.913; aOR 1.12, 95% CI 0.56–2.26, p = 0.762; aOR 0.90, 95% CI 0.57–1.43, p = 0.651). Limitations of our study are a lower-than-anticipated power to detect change in mortality outcomes (low event rates, low participant numbers, high intracluster correlation) and major contextual changes related to the 2016–2017 Nigerian economic recession that influenced care-seeking and hospital function during the study period, potentially confounding mortality outcomes.

Conclusions

We observed no mortality benefit for children and a possible higher risk of neonatal death following the introduction of a multifaceted oxygen system compared to introducing pulse oximetry alone. Where some oxygen is available, pulse oximetry may improve oxygen usage and clinical outcomes for children with ALRI.

Trial registration

Australian New Zealand Clinical Trials Registry: ACTRN12617000341325.

Klíčová slova:

Death rates – Hospitals – Malaria – Neonatal sepsis – Neonates – Nigeria – Oxygen – Pneumonia


Zdroje

1. Duke T, Graham SM, Cherian MN, Ginsburg AS, English M, Howie S, et al. Oxygen is an essential medicine: a call for international action. Int J Tuberc Lung Dis. 2010;14(11):1362–8. 20937173; PubMed Central PMCID: PMC2975100UKMS33165.

2. Subhi R, Adamson M, Campbell H, Weber M, Smith K, Duke T. The prevalence of hypoxaemia among ill children in developing countries: a systematic review. Lancet Infect Dis. 2009;9:219–27. doi: 10.1016/S1473-3099(09)70071-4 19324294.

3. Bassat Q, Lanaspa M, Machevo S, O'Callaghan-Gordo C, Madrid L, Nhampossa T, et al. Hypoxaemia in Mozambican children <5 years of age admitted to hospital with clinical severe pneumonia: clinical features and performance of predictor models. Trop Med Int Health. 2016;21(9):1147–56. doi: 10.1111/tmi.12738 27310711.

4. Lazzerini M, Seward N, Lufesi N, Banda R, Sinyeka S, Masache G, et al. Mortality and its risk factors in Malawian children admitted to hospital with clinical pneumonia, 2001–12: a retrospective observational study. Lancet Glob Health. 2016;4(1):e57–e68. doi: 10.1016/S2214-109X(15)00215-6 26718810

5. Lazzerini M, Sonego M, Pellegrin MC. Hypoxaemia as a Mortality Risk Factor in Acute Lower Respiratory Infections in Children in Low and Middle-Income Countries: Systematic Review and Meta-Analysis. PLoS ONE. 2015;10(9):e0136166. doi: 10.1371/journal.pone.0136166 26372640; PubMed Central PMCID: PMC4570717.

6. Graham HR, Bakare AA, Ayede AI, Oyewole OB, Gray A, Peel D, et al. Hypoxaemia in hospitalised children and neonates: a prospective cohort study in Nigerian secondary-level hospitals. EClinicalMedicine. Available from: https://doi.org/10.1016/j.eclinm.2019.10.009. Epub 2019 Oct 24.

7. Graham H, Tosif S, Gray A, Qazi S, Campbell H, Peel D, et al. Providing oxygen to children in hospitals: a realist review. Bull World Health Organ. 2017;95(4):288–302. doi: 10.2471/BLT.16.186676 28479624

8. Ginsburg AS, Van cleve WC, Thompson MIW, English M. Oxygen and pulse oximetry in childhood pneumonia: A survey of healthcare providers in resource-limited settings. Journal of Tropical Pediatrics. 2012;58:389–93. doi: 10.1093/tropej/fmr103 22170511.

9. La Vincente SF, Peel D, Carai S, Weber MW, Enarson P, Maganga E, et al. The functioning of oxygen concentrators in resource-limited settings: a situation assessment in two countries. Int J Tuberc Lung Dis. 2011;15(5):693–9. doi: 10.5588/ijtld.10.0544 21756524.

10. McCollum ED, Bjornstad E, Preidis GA, Hosseinipour MC, Lufesi N. Multicenter study of hypoxemia prevalence and quality of oxygen treatment for hospitalized Malawian children. Trans R Soc Trop Med Hyg. 2013;107(5):285–92. doi: 10.1093/trstmh/trt017 23584373; PubMed Central PMCID: PMCNIHMS572053PMC4030433.

11. Hill SE, Njie O, Sanneh M, Jallow M, Peel D, Njie M, et al. Oxygen for treatment of severe pneumonia in The Gambia, West Africa: a situational analysis. The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease. 2009;13:587–93. 19383191.

12. Wandi F, Peel D, Duke T. Hypoxaemia among children in rural hospitals in Papua New Guinea: epidemiology and resource availability—a study to support a national oxygen programme. Ann Trop Paediatr. 2006;26:277–84. doi: 10.1179/146532806X152791 17132292.

13. Graham H, Ayede AI, Bakare A, Oyewole O, Peel D, Falade A, et al. Oxygen for children and newborns in non-tertiary hospitals in South-west Nigeria: A needs-assessment. Afr J Med Med Sci. 2016;(45).

14. Duke T, Wandi F, Jonathan M, Matai S, Kaupa M, Saavu M, et al. Improved oxygen systems for childhood pneumonia: a multihospital effectiveness study in Papua New Guinea. Lancet. 2008;372(9646):1328–33. doi: 10.1016/S0140-6736(08)61164-2 18708248.

15. Gray AZ, Morpeth M, Duke T, Peel D, Winter C, Satvady M, et al. Improved oxygen systems in district hospitals in Lao PDR: a prospective field trial of the impact on outcomes for childhood pneumonia and equipment sustainability. BMJ Open. 2017;1. doi: 10.1136/10.1136/bmjpo-2017-000083

16. Floyd J, Wu L, Hay Burgess D, Izadnegahdar R, Mukanga D, Ghani AC. Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings. Nature. 2015;528(7580):S53–S9. doi: 10.1038/nature16043 26633766

17. UN IGCME. Levels and Trends in Child Mortality: Report 2018. New York, US: United Nations Children's Fund (UNICEF), 2018.

18. WHO and Maternal and Child Epidemiology Estimation Group (MCEE). UNICEF Data: Monitoring the Situation of Children and Women: Cause of death: UNICEF; 2015 [cited 2017 4 April]. Available from: http://data.unicef.org.

19. Adebola O, Babatunde O, Bose O. Hypoxemia predicts death from severe falciparum malaria among children under 5 years of age in Nigeria: the need for pulse oximetry in case management. Afr Health Sci. 2014;14(2):397–407. doi: 10.4314/ahs.v14i2.16 25320590; PubMed Central PMCID: PMC4196412.

20. Orimadegun AE, Ogunbosi BO, Carson SS. Prevalence and predictors of hypoxaemia in respiratory and non-respiratory primary diagnoses among emergently ill children at a tertiary hospital in south western Nigeria. Trans R Soc Trop Med Hyg. 2013;107(11):699–705. doi: 10.1093/trstmh/trt082 24062524.

21. Abdulkadir MB, Ibraheem RM, Gobir AA, Johnson WB. Hypoxaemia as a measure of disease severity in young hospitalised Nigerian children with pneumonia: A cross-sectional study. SAJCH South African Journal of Child Health. 2015;9(2):53–6. Available from: https://www.ajol.info/index.php/sajchh/article/view/120201.

22. Morgan MC, Maina B, Waiyego M, Mutinda C, Aluvaala J, Maina M, et al. Pulse oximetry values of neonates admitted for care and receiving routine oxygen therapy at a resource-limited hospital in Kenya. J Paediatr Child Health. 2018;54(3):260–6. doi: 10.1111/jpc.13742 29080284.

23. Weber MW, Carlin JB, Gatchalian S, Lehmann D, Muhe L, Mulholland EK. Predictors of neonatal sepsis in developing countries. The Pediatric infectious disease journal. 2003;22:711–7. doi: 10.1097/01.inf.0000078163.80807.88 12913772.

24. English M, Ngama M, Musumba C, Wamola B, Bwika J, Mohammed S, et al. Causes and outcome of young infant admissions to a Kenyan district hospital. Arch Dis Child. 2003;88:438–43. doi: 10.1136/adc.88.5.438 12716721.

25. Wandeler G, Pauchard JY, Zangger E, Diawara H, Gehri M. Which clinical signs predict hypoxaemia in young Senegalese children with acute lower respiratory tract disease? Paediatr Int Child Health. 2015;35(1):65–8. doi: 10.1179/2046905514Y.0000000153 25547179.

26. Salah ET, Algasim SH, Mhamoud AS, Husian NEOSA. Prevalence of hypoxemia in under-five children with pneumonia in an emergency pediatrics hospital in Sudan. Indian Journal of Critical Care Medicine. 2015;19:203. doi: 10.4103/0972-5229.154549 25878427

27. Graham HR, Ayede AI, Bakare AA, Oyewole OB, Peel D, Gray A, et al. Improving oxygen therapy for children and neonates in secondary hospitals in Nigeria: study protocol for a stepped-wedge cluster randomised trial. Trials. 2017;18(1):502. doi: 10.1186/s13063-017-2241-8 29078810.

28. Graham HR, Bakare AA, Gray A, Ayede AI, Qazi S, McPake B, et al. Adoption of paediatric and neonatal pulse oximetry by 12 hospitals in Nigeria: a mixed-methods realist evaluation. BMJ global health. 2018;3:e000812. doi: 10.1136/bmjgh-2018-000812 29989086

29. Bakare AA, Graham H, Ayede AI, Peel D, Olatinwo O, Oyewole OB, et al. Providing oxygen to children and newborns: a multi-faceted technical and clinical assessment of oxygen access and oxygen use in secondary-level hospitals in southwest Nigeria. International health. 2019. doi: 10.1093/inthealth/ihz009 30916340

30. Matai S, Peel D, Wandi F, Jonathan M, Subhi R, Duke T. Implementing an oxygen programme in hospitals in Papua New Guinea. Ann Trop Paediatr. 2008;28:71–8. doi: 10.1179/146532808X270716 18318953.

31. Subhi R. Oxygen systems in health facilities with limited resources: A Trial in Papua New Guinea. Melbourne: University of Melbourne; 2008.

32. WHO. Oxygen therapy for children. Geneva: World Health Organization; 2016.

33. WHO. Technical Specifications for Oxygen Concentrators. In: Organization WH, editor. WHO Medical Device Technical Series. Geneva: World Health Organization; 2015.

34. WHO. Pocket Book of Hospital care for children: guidelines for the management of common childhood illnesses. 2nd ed. Geneva: World Health Organization; 2013.

35. Merrill MD. First Principles of Instruction. In: Reigeluth CM, Carr A, editors. Instructional Design Theories and Models: Building a Common Knowledge Base. III. New York: Routledge Publishers; 2009.

36. Michie S, van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement Sci. 2011;6:42. doi: 10.1186/1748-5908-6-42 21513547; PubMed Central PMCID: PMC3096582.

37. Cane J, O'Connor D, Michie S. Validation of the theoretical domains framework for use in behaviour change and implementation research. Implement Sci. 2012;7(37).

38. Powell BJ, Waltz TJ, Chinman MJ, Damschroder LJ, Smith JL, Matthieu MM, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10:21. doi: 10.1186/s13012-015-0209-1 25889199; PubMed Central PMCID: PMC4328074.

39. Bandura A. Social foundations of thought and action: A social cognitive theory: Prentice-Hall, Inc; 1986.

40. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemporary Clinical Trials. 2007;28:182–91. doi: 10.1016/j.cct.2006.05.007 16829207

41. Hemming K, Girling A. A menu-driven facility for power and detectable-difference calculations in stepped-wedge cluster-randomized trials. The Stata Journal. 2014;14(2):363–80.

42. Pagel C, Prost A, Lewycka S, Das S, Colbourn T, Mahapatra R, et al. Intracluster correlation coefficients and coefficients of variation for perinatal outcomes from five cluster-randomised controlled trials in low and middle-income countries: results and methodological implications. Trials. 2011;12:151. doi: 10.1186/1745-6215-12-151 21672223

43. Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. BMJ Case Reports. 2015;350:h391–h. doi: 10.1136/bmj.h391 25662947

44. Davey C, Hargreaves J, Thompson JA, Copas AJ, Beard E, Lewis JJ, et al. Analysis and reporting of stepped wedge randomised controlled trials: synthesis and critical appraisal of published studies, 2010 to 2014. Trials. 2015;16:358. doi: 10.1186/s13063-015-0838-3 26278667

45. Hemming K, Taljaard M, Forbes A. Analysis of cluster randomised stepped wedge trials with repeated cross-sectional samples. Trials. 2017;18(1):101. doi: 10.1186/s13063-017-1833-7 28259174; PubMed Central PMCID: PMC5336660.

46. Oleribe OO, Udofia D, Oladipo O, Ishola TA, Taylor-Robinson SD. Healthcare workers' industrial action in Nigeria: a cross-sectional survey of Nigerian physicians. Hum Resour Health. 2018;16(1):54. Epub 2018/10/20. doi: 10.1186/s12960-018-0322-8 30333035; PubMed Central PMCID: PMC6192190.

47. Duke T, Mgone J, Frank D. Hypoxaemia in children with severe pneumonia in Papua New Guinea. The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease. 2001;5:511–9. 11409576.

48. Enarson PM, Gie RP, Mwansambo CC, Maganga ER, Lombard CJ, Enarson DA, et al. Reducing Deaths from Severe Pneumonia in Children in Malawi by Improving Delivery of Pneumonia Case Management. PLoS ONE. 2014;9(7). e102955. doi: 10.1371/journal.pone.0102955 25050894

49. Morrissey B, Conroy N, Estelle A. Effect of solar panels on in-patient paediatric mortality in a district hospital in Sierra Leone. Arch Dis Child. 2015;100:A114. http://dx.doi.org/10.1136/archdischild-2015-308599.253. 71930205.

50. Perrone S, Bracciali C, Di Virgilio N, Buonocore G. Oxygen Use in Neonatal Care: A Two-edged Sword. Front Pediatr. 2016;4:143. Epub 2017/01/26. doi: 10.3389/fped.2016.00143 28119904; PubMed Central PMCID: PMC5220090.

51. Askie LM, Darlow BA, Finer N, Schmidt B, Stenson B, Tarnow-Mordi W, et al. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. Jama. 2018;319(21):2190–201. Epub 2018/06/07. doi: 10.1001/jama.2018.5725 29872859.

52. English M, Ayieko P, Nyamai R, Were F, Githanga D, Irimu G. What do we think we are doing? How might a clinical information network be promoting implementation of recommended paediatric care practices in Kenyan hospitals? Health Res Policy Syst. 2017;15(1):4. doi: 10.1186/s12961-017-0172-1 28153020; PubMed Central PMCID: PMC5290627.

53. Nigeria FMoH. National Strategy for the Scale-up of Medical Oxygen in Health Facilities 2017–2022. Abuja2017.

54. Ethiopia FMoH. National Medical Oxygen and Pulse Oximetry Scale Up Road Map (2016-2020/21). Addis Ababa2016.

55. Nigeria FMoH. National Policy on Medical Oxygen in Health Facilities. Abuja, Nigeria: Nigerian Federal Ministry of Health, 2017.

Štítky
Interní lékařství

Článek vyšel v časopise

PLOS Medicine


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Halitóza
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#