Impact of physicians’ participation in non-interventional post-marketing studies on their prescription habits: A retrospective 2-armed cohort study in Germany

Autoři: Cora Koch aff001;  Jörn Schleeff aff003;  Franka Techen aff003;  Daniel Wollschläger aff004;  Gisela Schott aff005;  Ralf Kölbel aff006;  Klaus Lieb aff002
Působiště autorů: Clinic of Neurology and Neurophysiology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany aff001;  Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany aff002;  National Association of Statutory Health Insurance Funds, Berlin, Germany aff003;  Institute for Medical Biostatistics, Epidemiology and Informatics, Mainz, Germany aff004;  Drug Commission of the German Medical Association, Berlin, Germany aff005;  Law Faculty, Ludwig Maximilian University of Munich, Munich, Germany aff006
Vyšlo v časopise: Impact of physicians’ participation in non-interventional post-marketing studies on their prescription habits: A retrospective 2-armed cohort study in Germany. PLoS Med 17(6): e32767. doi:10.1371/journal.pmed.1003151
Kategorie: Research Article
doi: 10.1371/journal.pmed.1003151



Non-interventional post-marketing studies (NIPMSs) sponsored by pharmaceutical companies are controversial because, while they are theoretically useful instruments for pharmacovigilance, some authors have hypothesized that they are merely marketing instruments used to influence physicians’ prescription behavior. So far, it has not been shown, to our knowledge, whether NIPMSs actually do have an influence on prescription behavior. The objective of this study was therefore to investigate whether physicians’ participation in NIPMSs initiated by pharmaceutical companies has an impact on their prescription behavior. In addition, we wanted to analyze whether specific characteristics of NIPMSs have a differing impact on prescription behavior.

Methods and findings

In a retrospective 2-armed cohort study, the prescription behavior of 6,996 German physicians, of which 2,354 had participated in at least 1 of 24 NIPMSs and 4,642 were controls, was analyzed. Data were acquired between 6 October 2016 and 8 June 2018. Controls were matched by overall prescription volume and number of prescriptions of the drug studied in the NIPMS in the year prior to the NIPMS. Primary outcome was the relative rate of prescriptions of the drug studied in the NIPMS by participating physicians compared to controls during the NIPMS and the following year. Secondary outcomes were the proportion of prescriptions of the studied drug compared to alternative drugs used for the same indication, the revenue generated by these prescriptions, and the association between the marketing characteristics of the NIPMS and prescription habits. Of the 24 NIPMSs, the 2 largest drug groups studied were antineoplastic and immunomodulatory agents (7/24, 29.2%) and agents for the nervous system (4/24, 16.7%). Physicians participating in an NIPMS prescribed more of the studied drug during and in the year after the NIPMS, at a relative rate of 1.08 (95% CI 1.07–1.10; p < 0.001) and 1.07 (95% CI 1.05–1.09); p < 0.001), respectively. Participating physicians were more likely than controls to prescribe one of the studied drugs rather than alternative drugs used for the same indication (odds ratio 1.04; 95% CI 1.03–1.05). None of the marketing characteristics studied were significantly associated with prescription practices. The main limitation was the difficulty in controlling for confounders due to privacy laws, with a resulting lack of information regarding the included physicians, which was mainly addressed by the matching process.


Physicians participating in NIPMSs prescribe more of the investigated drug than matching controls. This result calls the alleged non-interventional character of NIPMSs into question and should lead to stricter regulation of NIPMSs.

Klíčová slova:

Adverse events – Data acquisition – Directed acyclic graphs – Drug marketing – Habits – Health insurance – Marketing – Physicians


1. BMJ. Post-marketing observational studies: my experience in the drug industry. BMJ. 2012;344:e3990. doi: 10.1136/bmj.e3990 22692654

2. Gesetz über den Verkehr mit Arzneimitteln (Arzneimittelgesetz—AMG): § 4 Sonstige Begriffsbestimmungen. 1976 Aug 24. Berlin: Federal Ministry of Justice and Consumer Protection; 1976 [cited 2020 Jun 3]. Available from:

3. European Medicines Agency. Post-authorisation safety studies (PASS). Amsterdam: European Medicines Agency; 2018 [cited 2019 Sep 30]. Available from:

4. von Jeinsen BKJG, Sudhop T. A 1-year cross-sectional analysis of non-interventional post-marketing study protocols submitted to the German Federal Institute for Drugs and Medical Devices (BfArM). Eur J Clin Pharmacol. 2013;69(7):1453–66. doi: 10.1007/s00228-013-1482-z 23512215

5. Dietrich ES. Die meisten deutschen Anwendungsbeobachtungen sind zur Generierung wissenschaftlich valider Erkenntnisse nicht geeignet. Pharmacoeconomics Ger Res Articles. 2009;7(1):3–14.

6. Sox HC, Rennie D. Seeding trials: just say “no.” Ann Intern Med. 2008;149(4):279. doi: 10.7326/0003-4819-149-4-200808190-00012 18711161

7. London AJ, Kimmelman J, Carlisle B. Research ethics. Rethinking research ethics: the case of postmarketing trials. Science. 2012;336(6081):544–5. doi: 10.1126/science.1216086 22556237

8. Spelsberg A, Prugger C, Doshi P, Ostrowski K, Witte T, Hüsgen D, et al. Contribution of industry funded post-marketing studies to drug safety: survey of notifications submitted to regulatory agencies. BMJ. 2017;356:j337. doi: 10.1136/bmj.j337 28174182

9. Koch C, Appel AS, Lieb K, Lubner SM, Kölbel R. Sind Anwendungsbeobachtungen ein Marketing-Tool?. Medizinrecht. 2018;36(4):225–31.

10. Hasford J, Lamprecht T. Company observational post-marketing studies: drug risk assessment and drug research in special populations—a study-based analysis. Eur J Clin Pharmacol. 1998;53(5):369–71. doi: 10.1007/s002280050395 9516039

11. Wieseler B, McGauran N, Kaiser T. New drugs: where did we go wrong and what can we do better? BMJ. 2019;366:l4340. doi: 10.1136/bmj.l4340 31292109

12. Woloshin S, Schwartz LM, White B, Moore TJ. The fate of FDA postapproval studies. N Engl J Med. 2017;377(12):1114–7. doi: 10.1056/NEJMp1705800 28930510

13. Krumholz SD, Egilman DS, Ross JS. STEPS: a narrative account of a gabapentin seeding trial. Arch Intern Med. 2011;171(12):1100–7. doi: 10.1001/archinternmed.2011.241 21709111

14. Hill KP, Ross JS, Egilman DS, Krumholz HM. The ADVANTAGE Seeding Trial: a review of internal documents. Ann Intern Med. 2008;149(4):251–8. doi: 10.7326/0003-4819-149-4-200808190-00006 18711155

15. Andersen M, Kragstrup J, Sondergaard J. How conducting a clinical trial affects physicians’ guideline adherence and drug preferences. JAMA. 2006;295(23):2759–64. doi: 10.1001/jama.295.23.2759 16788131

16. Gesetz über den Verkehr mit Arzneimitteln (Arzneimittelgesetz—AMG): § 67 Allgemeine Anzeigepflicht. 1976 Aug 24. Berlin: Federal Ministry of Justice and Consumer Protection; 1976 [cited 2019 Jul 23]. Available from:

17. Hennessy S, Bilker WB, Berlin JA, Strom BL. Factors influencing the optimal control-to-case ratio in matched case-control studies. Am J Epidemiol. 1999;149(2):195–7. doi: 10.1093/oxfordjournals.aje.a009786 9921965

18. Wacholder S, Silverman DT, McLaughlin JK, Mandel JS. Selection of controls in case-control studies. III. Design options. Am J Epidemiol. 1992;135(9):1042–50. doi: 10.1093/oxfordjournals.aje.a116398 1595690

19. Verband der Ersatzkassen. Daten zum Gesundheitswesen: Versicherte. Berlin: Verband der Ersatzkassen; 2020 [cited 2020 Apr 8]. Available from:

20. Wissenschaftliches Institut der AOK. ATC-Klassifikation für den deutschen Arzneimittelmarkt. Berlin: Wissenschaftliches Institut der AOK; 2019 [cited 2019 Oct 1]. Available from:

21. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48. 9888278

22. Richardson DB, Langholz B. Background stratified Poisson regression analysis of cohort data. Radiat Environ Biophys. 2012;51(1):15–22. doi: 10.1007/s00411-011-0394-5 22193911

23. Turner H, Firth D. Generalized nonlinear models in R: an overview of the gnm package. Comprehensive R Archive Network; 2018.

24. Bürkner P-C. brms: an R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):1–28. doi: 10.18637/jss.v080.i01

25. Højsgaard S, Halekoh U, Yan J. The R package geepack for generalized estimating equations. J Stat Softw. 2005;15(1):1–11. doi: 10.18637/jss.v015.i02

26. R Development Core Team. R: a language and environment for statistical computing. Version 3.6.2. Vienna: R Foundation for Statistical Computing; 2008. Available from:

27. Trilling T. Pharmamarketing: ein Leitfaden für die tägliche Praxis. 3rd edition. Berlin: Springer; 2015.

28. Glass HE. Do clinical grant payment practices in phase 3 clinical trials influence subsequent clinical investigator prescribing behavior? Dis Manag. 2004;7(1):77–87. doi: 10.1089/109350704322919014 15035835

29. Austad KE, Avorn J, Franklin JM, Campbell EG, Kesselheim AS. Association of marketing interactions with medical trainees’ knowledge about evidence-based prescribing: results from a national survey. JAMA Intern Med. 2014;174(8):1283–90. doi: 10.1001/jamainternmed.2014.2202 24911123

30. Fleischman W, Agrawal S, King M, Venkatesh AK, Krumholz HM, McKee D, et al. Association between payments from manufacturers of pharmaceuticals to physicians and regional prescribing: cross sectional ecological study. BMJ. 2016;354:i4189. doi: 10.1136/bmj.i4189 27540015

31. Yeh JS, Franklin JM, Avorn J, Landon J, Kesselheim AS. association of industry payments to physicians with the prescribing of brand-name statins in Massachusetts. JAMA Intern Med. 2016;176(6):763–8. doi: 10.1001/jamainternmed.2016.1709 27159336

32. Lieb K, Scheurich A. Contact between doctors and the pharmaceutical industry, their perceptions, and the effects on prescribing habits. PLoS ONE. 2014;9(10):e110130. doi: 10.1371/journal.pone.0110130 25330392

33. Lundh A, Lexchin J, Mintzes B, Schroll JB, Bero L. Industry sponsorship and research outcome. Cochrane Database Syst Rev. 2017;2:MR000033. doi: 10.1002/14651858.MR000033.pub3 28207928

Článek vyšel v časopise

PLOS Medicine

2020 Číslo 6
Nejčtenější tento týden
Nejčtenější v tomto čísle
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se