Studying individual risk factors for self-harm in the UK Biobank: A polygenic scoring and Mendelian randomisation study


Autoři: Kai Xiang Lim aff001;  Frühling Rijsdijk aff001;  Saskia P. Hagenaars aff001;  Adam Socrates aff001;  Shing Wan Choi aff001;  Jonathan R. I. Coleman aff001;  Kylie P. Glanville aff001;  Cathryn M. Lewis aff001;  Jean-Baptiste Pingault aff001
Působiště autorů: Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom aff001;  Icahn School of Medicine at Mount Sinai, New York, New York, United States of America aff002;  Division of Psychology and Language Sciences, University College London, London, United Kingdom aff003
Vyšlo v časopise: Studying individual risk factors for self-harm in the UK Biobank: A polygenic scoring and Mendelian randomisation study. PLoS Med 17(6): e1003137. doi:10.1371/journal.pmed.1003137
Kategorie: Research Article
doi: 10.1371/journal.pmed.1003137

Souhrn

Background

Identifying causal risk factors for self-harm is essential to inform preventive interventions. Epidemiological studies have identified risk factors associated with self-harm, but these associations can be subject to confounding. By implementing genetically informed methods to better account for confounding, this study aimed to better identify plausible causal risk factors for self-harm.

Methods and findings

Using summary statistics from 24 genome-wide association studies (GWASs) comprising 16,067 to 322,154 individuals, polygenic scores (PSs) were generated to index 24 possible individual risk factors for self-harm (i.e., mental health vulnerabilities, substance use, cognitive traits, personality traits, and physical traits) among a subset of UK Biobank participants (N = 125,925, 56.2% female) who completed an online mental health questionnaire in the period from 13 July 2016 to 27 July 2017. In total, 5,520 (4.4%) of these participants reported having self-harmed in their lifetime. In binomial regression models, PSs indexing 6 risk factors (major depressive disorder [MDD], attention deficit/hyperactivity disorder [ADHD], bipolar disorder, schizophrenia, alcohol dependence disorder, and lifetime cannabis use) predicted self-harm, with effect sizes ranging from odds ratio (OR) = 1.05 (95% CI 1.02 to 1.07, q = 0.008) for lifetime cannabis use to OR = 1.20 (95% CI 1.16 to 1.23, q = 1.33 × 10−35) for MDD. No systematic differences emerged between suicidal and non-suicidal self-harm. To further probe causal relationships, two-sample Mendelian randomisation (MR) analyses were conducted, with MDD, ADHD, and schizophrenia emerging as the most plausible causal risk factors for self-harm. The genetic liabilities for MDD and schizophrenia were associated with self-harm independently of diagnosis and medication. Main limitations include the lack of representativeness of the UK Biobank sample, that self-harm was self-reported, and the limited power of some of the included GWASs, potentially leading to possible type II error.

Conclusions

In addition to confirming the role of MDD, we demonstrate that ADHD and schizophrenia likely play a role in the aetiology of self-harm using multivariate genetic designs for causal inference. Among the many individual risk factors we simultaneously considered, our findings suggest that systematic detection and treatment of core psychiatric symptoms, including psychotic and impulsivity symptoms, may be beneficial among people at risk for self-harm.

Klíčová slova:

ADHD – Bipolar disorder – Cannabis – Depression – Medical risk factors – Self harm – Schizophrenia – Suicide


Zdroje

1. Hawton K, Harriss L, Hall S, Simkin S, Bale E, Bond A. Deliberate self-harm in Oxford, 1990–2000: a time of change in patient characteristics. Psychol Med. 2003;33:987–95. doi: 10.1017/s0033291703007943 12946083

2. McManus S, Gunnell D, Cooper C, Bebbington PE, Howard LM, Brugha T, et al. Prevalence of non-suicidal self-harm and service contact in England, 2000–14: repeated cross-sectional surveys of the general population. Lancet Psychiatry. 2019;6:573–81. doi: 10.1016/S2215-0366(19)30188-9 31175059

3. Andover MS, Gibb BE. Non-suicidal self-injury, attempted suicide, and suicidal intent among psychiatric inpatients. Psychiatry Res. 2010;178:101–5. doi: 10.1016/j.psychres.2010.03.019 20444506

4. Swannell SV., Martin GE, Page A, Hasking P, St John NJ. Prevalence of nonsuicidal self-injury in nonclinical samples: systematic review, meta-analysis and meta-regression. Suicide Life Threat Behav. 2014;44:273–303. doi: 10.1111/sltb.12070 24422986

5. Evans E, Hawton K, Rodham K, Psychol C, Deeks J. The prevalence of suicidal phenomena in adolescents: a systematic review of population-based studies. Suicide Life Threat Behav. 2005;35:239–50. doi: 10.1521/suli.2005.35.3.239 16156486

6. Nock MK, Borges G, Bromet EJ, Alonso J, Angermeyer M, Beautrais A, et al. Cross-national prevalence and risk factors for suicidal ideation, plans and attempts. Br J Psychiatry. 2008;192:98–105. doi: 10.1192/bjp.bp.107.040113 18245022

7. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). Washington (DC): American Psychiatric Association; 2013.

8. Vaughn MG, Salas-Wright CP, DeLisi M, Larson M. Deliberate self-harm and the nexus of violence, victimization, and mental health problems in the United States. Psychiatry Res. 2015;225:588–95. doi: 10.1016/j.psychres.2014.11.041 25500323

9. Borges G, Bagge CL, Orozco R. A literature review and meta-analyses of cannabis use and suicidality. J Affect Disord. 2016; 195:63–74. doi: 10.1016/j.jad.2016.02.007 26872332

10. Darvishi N, Farhadi M, Haghtalab T, Poorolajal J. Alcohol-related risk of suicidal ideation, suicide attempt, and completed suicide: a meta-analysis. PLoS ONE. 2015;10:e0126870. doi: 10.1371/journal.pone.0126870 25993344

11. Evins AE, Korhonen T, Kinnunen TH, Kaprio J. Prospective association between tobacco smoking and death by suicide: a competing risks hazard analysis in a large twin cohort with 35-year follow-up. Psychol Med. 2017;47:2143–54. doi: 10.1017/S0033291717000587 28399944

12. Rehkopf DH, Buka SL. The association between suicide and the socio-economic characteristics of geographical areas: a systematic review. Psychol Med. 2006;36:145–57. doi: 10.1017/S003329170500588X 16420711

13. Brezo J, Paris J, Turecki G. Personality traits as correlates of suicidal ideation, suicide attempts, and suicide completions: a systematic review. Acta Psychiatr Scand. 2006;113:180–206. doi: 10.1111/j.1600-0447.2005.00702.x 16466403

14. Perera S, Eisen RB, Dennis BB, Bawor M, Bhatt M, Bhatnagar N, et al. Body mass index is an important predictor for suicide: results from a systematic review and meta-analysis. Suicide Life Threat Behav. 2016;46:697–736. doi: 10.1111/sltb.12244 27094229

15. Mann JJ, Waternaux C, Haas GL, Malone KM. Toward a clinical model of suicidal behavior in psychiatric patients. Am J Psychiatry. 1999;156:181–9. 9989552

16. Van Heeringen K, Mann JJ. The neurobiology of suicide. Lancet Psychiatry. 2014;1:63–72. doi: 10.1016/S2215-0366(14)70220-2 26360403

17. Van Heeringen K. Stress-diathesis model of suicidal behavior. In: Dwivedi Y, editor. The neurobiological basis of suicide. Boca Raton (FL): CRC Press; 2012. pp. 113–123. doi: 10.1201/b12215

18. McGirr A, Turecki G. The relationship of impulsive aggressiveness to suicidality and other depression-linked behaviors. Curr Psychiatry Rep. 2007;9:460–6. doi: 10.1007/s11920-007-0062-2 18221625

19. Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to strengthen causal inference in observational research. Nat Rev Genet. 2018;19:566–80. doi: 10.1038/s41576-018-0020-3 29872216

20. Gage SH, Davey Smith G, Ware JJ, Flint J, Munafò MR. G = E: what GWAS can tell us about the environment. PLoS Genet. 2016;12:e1005765. doi: 10.1371/journal.pgen.1005765 26866486

21. Pingault J-B, Cecil C, Murray J, Munafo M, Viding E. Causal inference in psychopathology: a systematic review of Mendelian randomisation studies aiming to identify environmental risk factors for psychopathology. Psychopathol Rev. 2017;a4:4–25. doi: 10.5127/pr.038115

22. Mullins N, Perroud N, Uher R, Butler AW, Cohen-Woods S, Rivera M, et al. Genetic relationships between suicide attempts, suicidal ideation and major psychiatric disorders: a genome-wide association and polygenic scoring study. Am J Med Genet B Neuropsychiatr Genet. 2014;165:428–37. doi: 10.1002/ajmg.b.32247 24964207

23. Mullins N, Bigdeli TB, Børglum AD, Coleman JRIR, Demontis D, Mehta D, et al. GWAS of suicide attempt in psychiatric disorders and association with major depression polygenic risk scores. Am J Psychiatry. 2019;176:651–60. doi: 10.1176/appi.ajp.2019.18080957 31164008

24. Levey DF, Polimanti R, Cheng Z, Zhou H, Nuñez YZ, Jain S, et al. Genetic associations with suicide attempt severity and genetic overlap with major depression. Transl Psychiatry. 2019;9:22. doi: 10.1038/s41398-018-0340-2 30655502

25. Sokolowski M, Wasserman J, Wasserman D. Polygenic associations of neurodevelopmental genes in suicide attempt. Mol Psychiatry. 2016;21:1381–90. doi: 10.1038/mp.2015.187 26666204

26. Maciejewski DF, Renteria ME, Abdellaoui A, Medland SE, Few LR, Gordon SD, et al. The association of genetic predisposition to depressive symptoms with non-suicidal and suicidal self-injuries. Behav Genet. 2017;47:3–10. doi: 10.1007/s10519-016-9809-z 27590903

27. Laursen TM, Trabjerg BB, Mors O, Børglum AD, Hougaard DM, Mattheisen M, et al. Association of the polygenic risk score for schizophrenia with mortality and suicidal behavior—a Danish population-based study. Schizophr Res. 2017;184:122–7. doi: 10.1016/j.schres.2016.12.001 27939829

28. Bani-Fatemi A, Tasmim S, Wang KZ, Warsh J, Sibille E, De Luca V. No interaction between polygenic scores and childhood trauma in predicting suicide attempt in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2019;89:169–73. doi: 10.1016/j.pnpbp.2018.08.027 30149093

29. Wiste A, Robinson EB, Milaneschi Y, Meier S, Ripke S, Clements CC, et al. Bipolar polygenic loading and bipolar spectrum features in major depressive disorder. Bipolar Disord. 2014;16:608–16. doi: 10.1111/bdi.12201 24725193

30. Wilcox HC, Fullerton JM, Glowinski AL, Benke K, Kamali M, Hulvershorn LA, et al. Traumatic stress interacts with bipolar disorder genetic risk to increase risk for suicide attempts. J Am Acad Child Adolesc Psychiatry. 2017;56:1073–80. doi: 10.1016/j.jaac.2017.09.428 29173741

31. Hodgson K, Coleman JRI, Hagenaars SP, Purves KL, Glanville K, Choi SW, et al. Cannabis use, depression and self-harm: phenotypic and genetic relationships. Addiction. 2019;115:482–92. doi: 10.1111/add.14845 31833150

32. Strawbridge RJ, Ward J, Ferguson A, Graham N, Shaw RJ, Cullen B, et al. Identification of novel genome-wide associations for suicidality in UK Biobank, genetic correlation with psychiatric disorders and polygenic association with completed suicide. EBioMedicine. 2019;41:517–25. doi: 10.1016/j.ebiom.2019.02.005 30745170

33. Ruderfer DM, Walsh CG, Aguirre MW, Tanigawa Y, Ribeiro JD, Franklin JC, et al. Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide. Mol Psychiatry. 2019 Jan 4. doi: 10.1038/s41380-018-0326-8 30610202

34. Davis KAS, Coleman JRI, Adams M, Allen N, Breen G, Cullen B, et al. Mental health in UK Biobank—development, implementation and results from an online questionnaire completed by 157 366 participants: a reanalysis. BJPsych Open. 2020;6:e18. doi: 10.1192/bjo.2019.100 32026800

35. R Core Team. R: a language and environment for statistical computing. Version 3.5.0. Vienna: R Foundation for Statistical Computing; 2017 [cited 2020 May 8]. https://www.r-project.org/.

36. Euesden J, Lewis CM, O’Reilly PF. PRSice: polygenic risk score software. Bioinformatics. 2015;31:1466–8. doi: 10.1093/bioinformatics/btu848 25550326

37. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81. doi: 10.1038/s41588-018-0090-3 29700475

38. Rietveld CA, Esko T, Davies G, Pers TH, Turley P, Benyamin B, et al. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A. 2014;111:13790–4. doi: 10.1073/pnas.1404623111 25201988

39. van den Berg SM, de Moor MHM, McGue M, Pettersson E, Terracciano A, Verweij KJH, et al. Harmonization of neuroticism and extraversion phenotypes across inventories and cohorts in the Genetics of Personality Consortium: an application of Item Response Theory. Behav Genet. 2014;44:295–313. doi: 10.1007/s10519-014-9654-x 24828478

40. Stringer S, Minică CC, Verweij KJH, Mbarek H, Bernard M, Derringer J, et al. Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32 330 subjects from the International Cannabis Consortium. Transl Psychiatry. 2016;6:e769. doi: 10.1038/tp.2016.36 27023175

41. Middeldorp CM, Hammerschlag AR, Ouwens KG, Groen-Blokhuis MM, St. Pourcain B, Greven CU, et al. A genome-wide association meta-analysis of attention-deficit/hyperactivity disorder symptoms in population-based pediatric cohorts. J Am Acad Child Adolesc Psychiatry. 2016;55:896–905.e6. doi: 10.1016/j.jaac.2016.05.025 27663945

42. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75. doi: 10.1038/s41588-018-0269-7 30478444

43. Walters RK, Polimanti R, Johnson ECEO, McClintick JN, Adams MJ, Adkins AE, et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci. 2018;21:1656–69. doi: 10.1038/s41593-018-0275-1 30482948

44. Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol Psychiatry. 2016;21:1391–9. doi: 10.1038/mp.2015.197 26754954

45. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011;43:977–83. doi: 10.1038/ng.943 21926972

46. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7. doi: 10.1038/nature13595 25056061

47. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42:441–7. doi: 10.1038/ng.571 20418890

48. Schumann G, Liu C, O’Reilly P, Gao H, Song P, Xu B, et al. KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference. Proc Natl Acad Sci U S A. 2016;113:14372–7. doi: 10.1073/pnas.1611243113 27911795

49. de Moor MHM, Costa PT, Terracciano A, Krueger RF, de Geus EJC, Toshiko T, et al. Meta-analysis of genome-wide association studies for personality. Mol Psychiatry. 2012;17:337–49. doi: 10.1038/mp.2010.128 21173776

50. van den Berg SM, de Moor MHM, Verweij KJH, Krueger RF, Luciano M, Arias Vasquez A, et al. Meta-analysis of genome-wide association studies for extraversion: findings from the Genetics of Personality Consortium. Behav Genet. 2016;46:170–82. doi: 10.1007/s10519-015-9735-5 26362575

51. Pappa I, St Pourcain B, Benke K, Cavadino A, Hakulinen C, Nivard MG, et al. A genome-wide approach to children’s aggressive behavior: the EAGLE consortium. Am J Med Genet B Neuropsychiatr Genet. 2016;171:562–72. doi: 10.1002/ajmg.b.32333 26087016

52. Tielbeek JJ, Johansson A, Polderman TJC, Rautiainen MR, Jansen P, Taylor M, et al. Genome-wide association studies of a broad spectrum of antisocial behavior. JAMA Psychiatry. 2017;74:1242–50. doi: 10.1001/jamapsychiatry.2017.3069 28979981

53. van der Valk RJP, Kreiner-Møller E, Kooijman MN, Guxens M, Stergiakouli E, Sääf A, et al. A novel common variant in DCST2 is associated with length in early life and height in adulthood. Hum Mol Genet. 2015;24:1155–68. doi: 10.1093/hmg/ddu510 25281659

54. Horikoshi M, Yaghootkar H, Mook-Kanamori DO, Sovio U, Taal HR, Hennig BJ, et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet. 2013;45:76–82. doi: 10.1038/ng.2477 23202124

55. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173–86. doi: 10.1038/ng.3097 25282103

56. Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45:501–12. doi: 10.1038/ng.2606 23563607

57. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. doi: 10.1038/nature14177 25673413

58. Chatterjee N, Shi J, García-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016;17:392–406. doi: 10.1038/nrg.2016.27 27140283

59. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.

60. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. doi: 10.7554/eLife.34408 29846171

61. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27:R195–208. doi: 10.1093/hmg/ddy163 29771313

62. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65. doi: 10.1002/gepi.21758 24114802

63. Zhao Q, Wang J, Hemani G, Bowden J, Small DS. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. arXiv: 1801.09652. 2018 Jan 29.

64. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14. doi: 10.1002/gepi.21965 27061298

65. Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25. doi: 10.1093/ije/dyv080 26050253

66. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45:1961–74. doi: 10.1093/ije/dyw220 27616674

67. Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13:e1007081. doi: 10.1371/journal.pgen.1007081 29149188

68. Angelakis I, Gooding P, Tarrier N, Panagioti M. Suicidality in obsessive compulsive disorder (OCD): a systematic review and meta-analysis. Clin Psychol Rev. 2015;39:1–15. doi: 10.1016/j.cpr.2015.03.002 25875222

69. James A, Lai FH, Dahl C. Attention deficit hyperactivity disorder and suicide: a review of possible associations. Acta Psychiatr Scand. 2004;110:408–15. doi: 10.1111/j.1600-0447.2004.00384.x 15521824

70. Khemiri L, Kuja-Halkola R, Larsson H, Jayaram-Lindström N. Genetic overlap between impulsivity and alcohol dependence: a large-scale national twin study. Psychol Med. 2016;46:1091–102. doi: 10.1017/S0033291715002652 26671289

71. Franklin JC, Ribeiro JD, Fox KR, Bentley KH, Kleiman EM, Huang X, et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol Bull. 2017;143:187–232. doi: 10.1037/bul0000084 27841450

72. Liang SH-Y, Yang Y-H, Kuo T-Y, Liao Y-T, Lin T-C, Lee Y, et al. Suicide risk reduction in youths with attention-deficit/hyperactivity disorder prescribed methylphenidate: a Taiwan nationwide population-based cohort study. Res Dev Disabil. 2018;72:96–105. doi: 10.1016/j.ridd.2017.10.023 29121517

73. Braun C, Bschor T, Franklin J, Baethge C. Suicides and suicide attempts during long-term treatment with antidepressants: a meta-analysis of 29 placebo-controlled studies including 6,934 patients with major depressive disorder. Psychother Psychosom. 2016;85:171–9. doi: 10.1159/000442293 27043848

74. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol. 2017;186:1026–34. doi: 10.1093/aje/kwx246 28641372

75. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157:1552–62. doi: 10.1176/appi.ajp.157.10.1552 11007705

76. Voracek M, Loibl LM. Genetics of suicide: a systematic review of twin studies. Wien Klin Wochenschr. 2007;119:463–75. doi: 10.1007/s00508-007-0823-2 17721766

Štítky
Interní lékařství

Článek vyšel v časopise

PLOS Medicine


2020 Číslo 6

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Kurz originály vs. generika
nový kurz
Autoři:

Klinická farmakokinetika betablokátorů
Autoři:

Současné možnosti terapie osteoartrózy
Autoři: MUDr. Jakub Holešovský

Preferovaná úlevová léčba Asthma Bronchiale
Autoři: PharmDr. Petr Sedlák

Inhibitory karboanhydrázy v léčbě glaukomu
Autoři: MUDr. Petr Výborný, CSc., FEBO

Všechny kurzy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se