#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Clofazimine enhances the efficacy of BCG revaccination via stem cell-like memory T cells


Autoři: Shaheer Ahmad aff001;  Debapriya Bhattacharya aff001;  Neeta Gupta aff001;  Varsha Rawat aff001;  Sultan Tousif aff001;  Luc Van Kaer aff002;  Gobardhan Das aff001
Působiště autorů: Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India aff001;  Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America aff002
Vyšlo v časopise: Clofazimine enhances the efficacy of BCG revaccination via stem cell-like memory T cells. PLoS Pathog 16(5): e1008356. doi:10.1371/journal.ppat.1008356
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008356

Souhrn

Tuberculosis (TB) is one of the deadliest diseases, claiming ~2 million deaths annually worldwide. The majority of people in TB endemic regions are vaccinated with Bacillus Calmette Guerin (BCG), which is the only usable vaccine available. BCG is efficacious against meningeal and disseminated TB in children, but protective responses are relatively short-lived and fail to protect against adult pulmonary TB. The longevity of vaccine efficacy critically depends on the magnitude of long-lasting central memory T (TCM) cells, a major source of which is stem cell-like memory T (TSM) cells. These TSM cells exhibit enhanced self-renewal capacity as well as to rapidly respond to antigen and generate protective poly-functional T cells producing IFN-γ, TNF-α, IL-2 and IL-17. It is now evident that T helper Th 1 and Th17 cells are essential for host protection against TB. Recent reports have indicated that Th17 cells preserve the molecular signature for TSM cells, which eventually differentiate into IFN-γ-producing effector cells. BCG is ineffective in inducing Th17 cell responses, which might explain its inadequate vaccine efficacy. Here, we show that revaccination with BCG along with clofazimine treatment promotes TSM differentiation, which continuously restores TCM and T effector memory (TEM) cells and drastically increases vaccine efficacy in BCG-primed animals. Analyses of these TSM cells revealed that they are predominantly precursors to host protective Th1 and Th17 cells. Taken together, these findings revealed that clofazimine treatment at the time of BCG revaccination provides superior host protection against TB by increasing long-lasting TSM cells.

Klíčová slova:

Cytokines – Immune response – Long term memory – Memory T cells – Spleen – T cells – Tuberculosis – Vaccines


Zdroje

1. WHO (2010) Global tuberculosis control report 2010. Summary. Cent Eur J Public Health 18: 237. 21361110

2. Pawlowski A, Jansson M, Skold M, Rottenberg ME, Kallenius G (2012) Tuberculosis and HIV co-infection. PLoS Pathog 8: e1002464. doi: 10.1371/journal.ppat.1002464 22363214

3. Zumla A, Raviglione M, Hafner R, von Reyn CF (2013) Tuberculosis. N Engl J Med 368: 745–755. doi: 10.1056/NEJMra1200894 23425167

4. Becker Y (2004) The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers—a review and hypothesis. Virus Genes 28: 5–18. doi: 10.1023/B:VIRU.0000012260.32578.72 14739648

5. Bhattacharya D, Danaviah S, Muema DM, Akilimali NA, Moodley P, Thumbi N, et al. (2017) Cellular Architecture of Spinal Granulomas and the Immunological Response in Tuberculosis Patients Coinfected with HIV. Front Immunol 8: 1120. doi: 10.3389/fimmu.2017.01120 28955338

6. Mutis T, Cornelisse YE, Ottenhoff TH (1993) Mycobacteria induce CD4+ T cells that are cytotoxic and display Th1-like cytokine secretion profile: heterogeneity in cytotoxic activity and cytokine secretion levels. Eur J Immunol 23: 2189–2195. doi: 10.1002/eji.1830230921 8103743

7. Haanen JB, de Waal Malefijt R, Res PC, Kraakman EM, Ottenhoff TH, de Vries RR et al. (1991) Selection of a human T helper type 1-like T cell subset by mycobacteria. J Exp Med 174: 583–592. doi: 10.1084/jem.174.3.583 1831489

8. Bhattacharya D, Dwivedi VP, Maiga M, Maiga M, Van Kaer L, Bishai WR, et al. (2014) Small molecule-directed immunotherapy against recurrent infection by Mycobacterium tuberculosis. J Biol Chem 289: 16508–16515. doi: 10.1074/jbc.M114.558098 24711459

9. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178: 2243–2247. doi: 10.1084/jem.178.6.2243 8245795

10. Dwivedi VP, Bhattacharya D, Chatterjee S, Prasad DV, Chattopadhyay D, Van Kaer L et al. (2012) Mycobacterium tuberculosis directs T helper 2 cell differentiation by inducing interleukin-1beta production in dendritic cells. J Biol Chem 287: 33656–33663. doi: 10.1074/jbc.M112.375154 22810226

11. Ravindran R, Krishnan VV, Khanum A, Luciw PA, Khan IH (2013) Exploratory study on plasma immunomodulator and antibody profiles in tuberculosis patients. Clin Vaccine Immunol 20: 1283–1290. doi: 10.1128/CVI.00213-13 23761664

12. Chatterjee S, Dwivedi VP, Singh Y, Siddiqui I, Sharma P, Van Kaer L, et al. (2011) Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner. PLoS Pathog 7: e1002378. doi: 10.1371/journal.ppat.1002378 22102818

13. Khader SA, Cooper AM (2008) IL-23 and IL-17 in tuberculosis. Cytokine 41: 79–83. doi: 10.1016/j.cyto.2007.11.022 18218322

14. Bhattacharya D, Dwivedi VP, Kumar S, Reddy MC, Van Kaer L, Moodley P, et al. (2014) Simultaneous inhibition of T helper 2 and T regulatory cell differentiation by small molecules enhances Bacillus Calmette-Guerin vaccine efficacy against tuberculosis. J Biol Chem 289: 33404–33411. doi: 10.1074/jbc.M114.600452 25315774

15. Ahlers JD, Belyakov IM (2010) Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood 115: 1678–1689. doi: 10.1182/blood-2009-06-227546 19903895

16. Henao-Tamayo MI, Ordway DJ, Irwin SM, Shang S, Shanley C, Orme IM (2010) Phenotypic definition of effector and memory T-lymphocyte subsets in mice chronically infected with Mycobacterium tuberculosis. Clin Vaccine Immunol 17: 618–625. doi: 10.1128/CVI.00368-09 20107011

17. Masopust D, Ha SJ, Vezys V, Ahmed R (2006) Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J Immunol 177: 831–839. doi: 10.4049/jimmunol.177.2.831 16818737

18. Wirth TC, Harty JT, Badovinac VP (2010) Modulating numbers and phenotype of CD8+ T cells in secondary immune responses. Eur J Immunol 40: 1916–1926. doi: 10.1002/eji.201040310 20411564

19. Wirth TC, Xue HH, Rai D, Sabel JT, Bair T, Harty JT, et al. (2010) Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8(+) T cell differentiation. Immunity 33: 128–140. doi: 10.1016/j.immuni.2010.06.014 20619696

20. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17: 1290–1297. doi: 10.1038/nm.2446 21926977

21. Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL, Song K, et al. (2013) Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest 123: 594–599. doi: 10.1172/JCI66327 23281401

22. Gattinoni L, Speiser DE, Lichterfeld M, Bonini C (2017) T memory stem cells in health and disease. Nat Med 23: 18–27. doi: 10.1038/nm.4241 28060797

23. Mateus J, Lasso P, Pavia P, Rosas F, Roa N, Valencia-Hernández CA, et al. (2015) Low frequency of circulating CD8+ T stem cell memory cells in chronic chagasic patients with severe forms of the disease. PLoS Negl Trop Dis 9: e3432. doi: 10.1371/journal.pntd.0003432 25569149

24. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, et al. (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13: 843–850. doi: 10.1038/nm1592 17558415

25. Lindenstrom T, Agger EM, Korsholm KS, Darrah PA, Aagaard C, Seder RA, et al. (2009) Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol 182: 8047–8055. doi: 10.4049/jimmunol.0801592 19494330

26. Jayaraman P, Jacques MK, Zhu C, Steblenko KM, Stowell BL, Madi A, et al. (2016) TIM3 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection. PLoS Pathog 12: e1005490. doi: 10.1371/journal.ppat.1005490 26967901

27. Kroesen VM, Groschel MI, Martinson N, Zumla A, Maeurer M, van der Werf TS, et al. (2017) Non-Steroidal Anti-inflammatory Drugs As Host-Directed Therapy for Tuberculosis: A Systematic Review. Front Immunol 8: 772. doi: 10.3389/fimmu.2017.00772 28713389

28. Singh DK, Dwivedi VP, Ranganathan A, Bishai WR, Van Kaer L, Das G (2016) Blockade of the Kv1.3 K+ Channel Enhances BCG Vaccine Efficacy by Expanding Central Memory T Lymphocytes. J Infect Dis 214: 1456–1464. doi: 10.1093/infdis/jiw395 27571906

29. Mpande CAM, Dintwe OB, Musvosvi M, Mabwe S, Bilek N, Hatherill M, et al. (2018) Functional, Antigen-Specific Stem Cell Memory (TSCM) CD4(+) T Cells Are Induced by Human Mycobacterium tuberculosis Infection. Front Immunol 9: 324. doi: 10.3389/fimmu.2018.00324 29545791

30. Jeon D (2017) WHO Treatment Guidelines for Drug-Resistant Tuberculosis, 2016 Update: Applicability in South Korea. Tuberc Respir Dis (Seoul) 80: 336–343.

31. Cholo MC, Mothiba MT, Fourie B, Anderson R (2017) Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother 72: 338–353. doi: 10.1093/jac/dkw426 27798208

32. Gocke AR, Lebson LA, Grishkan IV, Hu L, Nguyen HM, Whartenby KA, et al. (2012) Kv1.3 deletion biases T cells toward an immunoregulatory phenotype and renders mice resistant to autoimmune encephalomyelitis. J Immunol 188: 5877–5886. doi: 10.4049/jimmunol.1103095 22581856

33. Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8: 247–258. doi: 10.1038/nri2274 18323851

34. Raghuvanshi S, Sharma P, Singh S, Van Kaer L, Das G (2010) Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells. Proc Natl Acad Sci U S A 107: 21653–21658. doi: 10.1073/pnas.1007967107 21135221

35. Keswani RK, Tian C, Peryea T, Girish G, Wang X, Rosania GR (2016) Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent. Sci Rep 6: 23528. doi: 10.1038/srep23528 27000434

36. Baik J, Stringer KA, Mane G, Rosania GR (2013) Multiscale distribution and bioaccumulation analysis of clofazimine reveals a massive immune system-mediated xenobiotic sequestration response. Antimicrob Agents Chemother 57: 1218–1230. doi: 10.1128/AAC.01731-12 23263006

37. Moliva JI, Turner J, Torrelles JB (2017) Immune Responses to Bacillus Calmette-Guerin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis? Front Immunol 8: 407. doi: 10.3389/fimmu.2017.00407 28424703

38. Imkamp FM (1981) Clofazimine (lamprene or B663) in lepra reactions. Lepr Rev 52: 135–140. doi: 10.5935/0305-7518.19810015 7242222

39. Browne SG, Harman DJ, Waudby H, McDougall AC (1981) Clofazimine (Lamprene, B663) in the treatment of lepromatous leprosy in the United Kingdom. A 12 year review of 31 cases, 1966–1978. Int J Lepr Other Mycobact Dis 49: 167–176. 7196886

40. Swanson RV, Adamson J, Moodley C, Ngcobo B, Ammerman NC, Dorasamy A, et al. (2015) Pharmacokinetics and pharmacodynamics of clofazimine in a mouse model of tuberculosis. Antimicrob Agents Chemother 59: 3042–3051. doi: 10.1128/AAC.00260-15 25753644

41. Venkatesan K (1989) Clinical pharmacokinetic considerations in the treatment of patients with leprosy. Clin Pharmacokinet 16: 365–386. doi: 10.2165/00003088-198916060-00003 2661102

42. Schaad-Lanyi Z, Dieterle W, Dubois JP, Theobald W, Vischer W (1987) Pharmacokinetics of clofazimine in healthy volunteers. Int J Lepr Other Mycobact Dis 55: 9–15. 3559339

43. Ziraldo C, Gong C, Kirschner DE, Linderman JJ (2015) Strategic Priming with Multiple Antigens can Yield Memory Cell Phenotypes Optimized for Infection with Mycobacterium tuberculosis: A Computational Study. Front Microbiol 6: 1477. doi: 10.3389/fmicb.2015.01477 26779136

44. Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H, et al. (2004) Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci U S A 101: 5610–5615. doi: 10.1073/pnas.0308054101 15044705

45. Lewinsohn DA, Lewinsohn DM, Scriba TJ (2017) Polyfunctional CD4(+) T Cells As Targets for Tuberculosis Vaccination. Front Immunol 8: 1262. doi: 10.3389/fimmu.2017.01262 29051764

46. Orlando V, La Manna MP, Goletti D, Palmieri F, Lo Presti E, Joosten SA, et al. (2018) Human CD4 T-Cells With a Naive Phenotype Produce Multiple Cytokines During Mycobacterium Tuberculosis Infection and Correlate With Active Disease. Front Immunol 9: 1119. doi: 10.3389/fimmu.2018.01119 29875774

47. Muranski P, Restifo NP (2013) Essentials of Th17 cell commitment and plasticity. Blood 121: 2402–2414. doi: 10.1182/blood-2012-09-378653 23325835

48. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238. doi: 10.1038/nature04753 16648838

49. Zhao DM, Yu S, Zhou X, Haring JS, Held W, Badovinac VP, et al. (2010) Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol 184: 1191–1199. doi: 10.4049/jimmunol.0901199 20026746

50. Bhatt K, Verma S, Ellner JJ, Salgame P (2015) Quest for correlates of protection against tuberculosis. Clin Vaccine Immunol 22: 258–266. doi: 10.1128/CVI.00721-14 25589549

51. Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y, Sanchez-Perez L, et al. (2011) Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35: 972–985. doi: 10.1016/j.immuni.2011.09.019 22177921

52. Lindenstrom T, Woodworth J, Dietrich J, Aagaard C, Andersen P, Agger EM (2012) Vaccine-induced th17 cells are maintained long-term postvaccination as a distinct and phenotypically stable memory subset. Infect Immun 80: 3533–3544. doi: 10.1128/IAI.00550-12 22851756

53. Pepper M, Linehan JL, Pagan AJ, Zell T, Dileepan T, Cleary PP, et al. (2010) Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat Immunol 11: 83–89. doi: 10.1038/ni.1826 19935657

54. Brites D, Gagneux S (2015) Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev 264: 6–24. doi: 10.1111/imr.12264 25703549

55. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, et al. (2018) Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N Engl J Med 379: 138–149. doi: 10.1056/NEJMoa1714021 29996082

56. Pollock KM, Whitworth HS, Montamat-Sicotte DJ, Grass L, Cooke GS, Kapembwa MS, et al. (2013) T-cell immunophenotyping distinguishes active from latent tuberculosis. J Infect Dis 208: 952–968. doi: 10.1093/infdis/jit265 23966657

57. Cieri N, Oliveira G, Greco R, Forcato M, Taccioli C, Cianciotti B, et al. (2015) Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood 125: 2865–2874. doi: 10.1182/blood-2014-11-608539 25736310

58. Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG (2005) Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med 11: 1299–1305. doi: 10.1038/nm1326 16288282

59. Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF, (2008) Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci U S A 105: 15505–15510. doi: 10.1073/pnas.0710686105 18832156

60. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317: 256–260. doi: 10.1126/science.1145697 17569825


Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Halitóza
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#