Host prion protein expression levels impact prion tropism for the spleen


Autoři: Vincent Béringue aff001;  Philippe Tixador aff001;  Olivier Andréoletti aff002;  Fabienne Reine aff001;  Johan Castille aff003;  Thanh-Lan Laï aff001;  Annick Le Dur aff001;  Aude Laisné aff001;  Laetitia Herzog aff001;  Bruno Passet aff003;  Human Rezaei aff001;  Jean-Luc Vilotte aff003;  Hubert Laude aff001
Působiště autorů: Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France aff001;  Ecole Nationale Vétérinaire Toulouse, INRAE, IHAP, Toulouse, France aff002;  Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France aff003
Vyšlo v časopise: Host prion protein expression levels impact prion tropism for the spleen. PLoS Pathog 16(7): e1008283. doi:10.1371/journal.ppat.1008283
Kategorie: Research Article
doi: 10.1371/journal.ppat.1008283

Souhrn

Prions are pathogens formed from abnormal conformers (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc conformation to disease phenotype relationships extensively vary among prion strains. In particular, prions exhibit a strain-dependent tropism for lymphoid tissues. Prions can be composed of several substrain components. There is evidence that these substrains can propagate in distinct tissues (e.g. brain and spleen) of a single individual, providing an experimental paradigm to study the cause of prion tissue selectivity. Previously, we showed that PrPC expression levels feature in prion substrain selection in the brain. Transmission of sheep scrapie isolates (termed LAN) to multiple lines of transgenic mice expressing varying levels of ovine PrPC in their brains resulted in the phenotypic expression of the dominant sheep substrain in mice expressing near physiological PrPC levels, whereas a minor substrain replicated preferentially on high expresser mice. Considering that PrPC expression levels are markedly decreased in the spleen compared to the brain, we interrogate whether spleen PrPC dosage could drive prion selectivity. The outcome of the transmission of a large cohort of LAN isolates in the spleen from high expresser mice correlated with the replication rate dependency on PrPC amount. There was a prominent spleen colonization by the substrain preferentially replicating on low expresser mice and a relative incapacity of the substrain with higher-PrPC level need to propagate in the spleen. Early colonization of the spleen after intraperitoneal inoculation allowed neuropathological expression of the lymphoid substrain. In addition, a pair of substrain variants resulting from the adaptation of human prions to ovine high expresser mice, and exhibiting differing brain versus spleen tropism, showed different tropism on transmission to low expresser mice, with the lymphoid substrain colonizing the brain. Overall, these data suggest that PrPC expression levels are instrumental in prion lymphotropism.

Klíčová slova:

Animal prion diseases – Cloning – Genetically modified animals – Immunoblotting – Mouse models – Scrapie – Sheep – Spleen


Zdroje

1. Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519–50. doi: 10.1146/annurev.neuro.24.1.519 11283320.

2. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136–44. doi: 10.1126/science.6801762 6801762.

3. Lansbury PT Jr., Caughey B. The chemistry of scrapie infection: implications of the 'ice 9' metaphor. Chem Biol. 1995;2(1):1–5. doi: 10.1016/1074-5521(95)90074-8 9383397.

4. Bessen RA, Marsh RF. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol. 1994;68(12):7859–68. Epub 1994/12/01. 7966576; PubMed Central PMCID: PMC237248.

5. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science. 1996;274(5295):2079–82. Epub 1996/12/20. doi: 10.1126/science.274.5295.2079 8953038.

6. Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, et al. The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog. 2010;6(4):e1000859. Epub 2010/04/27. doi: 10.1371/journal.ppat.1000859 20419156; PubMed Central PMCID: PMC2855332.

7. Beringue V, Vilotte JL, Laude H. Prion agent diversity and species barrier. Vet Res. 2008;39(4):47. Epub 2008/06/04. doi: 10.1051/vetres:2008024 [pii]. 18519020.

8. Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science. 2007;318(5852):930–6. doi: 10.1126/science.1138718 17991853.

9. Andreoletti O, Berthon P, Marc D, Sarradin P, Grosclaude J, van Keulen L, et al. Early accumulation of PrP(Sc) in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J Gen Virol. 2000;81(Pt 12):3115–26. doi: 10.1099/0022-1317-81-12-3115 11086143.

10. Beringue V, Adjou KT, Lamoury F, Maignien T, Deslys JP, Race R, et al. Opposite effects of dextran sulfate 500, the polyene antibiotic MS-8209, and Congo red on accumulation of the protease-resistant isoform of PrP in the spleens of mice inoculated intraperitoneally with the scrapie agent. J Virol. 2000;74(12):5432–40. doi: 10.1128/jvi.74.12.5432-5440.2000 10823847; PubMed Central PMCID: PMC112027.

11. Kimberlin RH, Walker CA. Pathogenesis of mouse scrapie: dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. J Comp Pathol. 1979;89(4):551–62. doi: 10.1016/0021-9975(79)90046-x 120379

12. Beekes M, Baldauf E, Diringer H. Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J Gen Virol. 1996;77 (Pt 8):1925–34. doi: 10.1099/0022-1317-77-8-1925 8760444.

13. Haik S, Faucheux BA, Sazdovitch V, Privat N, Kemeny JL, Perret-Liaudet A, et al. The sympathetic nervous system is involved in variant Creutzfeldt-Jakob disease. Nat Med. 2003;9(9):1121–3. doi: 10.1038/nm922 12937415.

14. Mabbott NA, Mackay F, Minns F, Bruce ME. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat Med. 2000;6(7):719–20. doi: 10.1038/77401 10888894.

15. Mabbott NA, Young J, McConnell I, Bruce ME. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J Virol. 2003;77(12):6845–54. doi: 10.1128/jvi.77.12.6845-6854.2003 12768004; PubMed Central PMCID: PMC156207.

16. McCulloch L, Brown KL, Bradford BM, Hopkins J, Bailey M, Rajewsky K, et al. Follicular dendritic cell-specific prion protein (PrP) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog. 2011;7(12):e1002402. doi: 10.1371/journal.ppat.1002402 22144895; PubMed Central PMCID: PMC3228802.

17. Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A, et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science. 2000;288(5469):1257–9. doi: 10.1126/science.288.5469.1257 10818004.

18. Prinz M, Heikenwalder M, Junt T, Schwarz P, Glatzel M, Heppner FL, et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature. 2003;425(6961):957–62. doi: 10.1038/nature02072 14562059.

19. Beringue V, Lasmezas CI, Adjou KT, Demaimay R, Lamoury F, Deslys JP, et al. Inhibiting scrapie neuroinvasion by polyene antibiotic treatment of SCID mice. J Gen Virol. 1999;80 (Pt 7):1873–7. doi: 10.1099/0022-1317-80-7-1873 10423158.

20. Lasmezas CI, Cesbron JY, Deslys JP, Demaimay R, Adjou KT, Rioux R, et al. Immune system-dependent and -independent replication of the scrapie agent. J Virol. 1996;70(2):1292–5. 8551598; PubMed Central PMCID: PMC189946.

21. Beringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A, et al. Facilitated cross-species transmission of prions in extraneural tissue. Science. 2012;335(6067):472–5. Epub 2012/01/28. doi: 10.1126/science.1215659 [pii]. 22282814.

22. Beringue V, Le Dur A, Tixador P, Reine F, Lepourry L, Perret-Liaudet A, et al. Prominent and persistent extraneural infection in human PrP transgenic mice infected with variant CJD. PLoS One. 2008;3(1):e1419. Epub 2008/01/10. doi: 10.1371/journal.pone.0001419 18183299; PubMed Central PMCID: PMC2171367.

23. Collis SC, Kimberlin RH. Long-term persistence of scrapie infection in mouse spleens in the absence of clinical disease. FEMS Microbiology Letters. 1985;29:111–4.

24. Bett C, Joshi-Barr S, Lucero M, Trejo M, Liberski P, Kelly JW, et al. Biochemical properties of highly neuroinvasive prion strains. PLoS Pathog. 2012;8(2):e1002522. Epub 2012/02/10. doi: 10.1371/journal.ppat.1002522 [pii]. 22319450; PubMed Central PMCID: PMC3271082.

25. Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Dabaghian R, Boyes L, et al. Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ. 2013;347:f5675. doi: 10.1136/bmj.f5675 24129059; PubMed Central PMCID: PMC3805509.

26. Collinge J. Cell biology. The risk of prion zoonoses. Science. 2012;335(6067):411–3. doi: 10.1126/science.1218167 22282797.

27. Angers RC, Kang HE, Napier D, Browning S, Seward T, Mathiason C, et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science. 2010;328(5982):1154–8. doi: 10.1126/science.1187107 20466881; PubMed Central PMCID: PMC4097672.

28. Chapuis J, Moudjou M, Reine F, Herzog L, Jaumain E, Chapuis C, et al. Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions. Acta neuropathologica communications. 2016;4(1):2–15. doi: 10.1186/s40478-016-0284-9 26847207

29. Le Dur A, Lai TL, Stinnakre MG, Laisne A, Chenais N, Rakotobe S, et al. Divergent prion strain evolution driven by PrPC expression level in transgenic mice. Nat Commun. 2017;8:14170. doi: 10.1038/ncomms14170 28112164; PubMed Central PMCID: PMC5264111.

30. Notari S, Capellari S, Langeveld J, Giese A, Strammiello R, Gambetti P, et al. A refined method for molecular typing reveals that co-occurrence of PrP(Sc) types in Creutzfeldt-Jakob disease is not the rule. Lab Invest. 2007;87(11):1103–12. Epub 2007/09/26. doi: 10.1038/labinvest.3700676 17893675.

31. Aguilar-Calvo P, Bett C, Sevillano AM, Kurt TD, Lawrence J, Soldau K, et al. Generation of novel neuroinvasive prions following intravenous challenge. Brain Pathol. 2018. Epub 2018/03/06. doi: 10.1111/bpa.12598 29505163.

32. Shikiya RA, Langenfeld KA, Eckland TE, Trinh J, Holec SAM, Mathiason CK, et al. PrPSc formation and clearance as determinants of prion tropism. PLoS Pathog. 2017;13(3):e1006298. Epub 2017/03/30. doi: 10.1371/journal.ppat.1006298 28355274; PubMed Central PMCID: PMC5386299.

33. Bett C, Lawrence J, Kurt TD, Orru C, Aguilar-Calvo P, Kincaid AE, et al. Enhanced neuroinvasion by smaller, soluble prions. Acta Neuropathol Commun. 2017;5(1):32. doi: 10.1186/s40478-017-0430-z 28431576; PubMed Central PMCID: PMC5399838.

34. Elsen JM, Amigues Y, Schelcher F, Ducrocq V, Andreoletti O, Eychenne F, et al. Genetic susceptibility and transmission factors in scrapie: detailed analysis of an epidemic in a closed flock of Romanov. Arch Virol. 1999;144(3):431–45. doi: 10.1007/s007050050516 10226611.

35. Langevin C, Andreoletti O, Le Dur A, Laude H, Beringue V. Marked influence of the route of infection on prion strain apparent phenotype in a scrapie transgenic mouse model. Neurobiol Dis. 2011;41(1):219–25. Epub 2010/09/30. S0969-9961(10)00311-6 [pii] doi: 10.1016/j.nbd.2010.09.010 20875860.

36. Foster JD, Dickinson AG. The unusual properties of CH1641, a sheep-passaged isolate of scrapie. Vet Rec. 1988;123(1):5–8. Epub 1988/07/02. doi: 10.1136/vr.123.1.5 3140468.

37. Baron T, Bencsik A, Vulin J, Biacabe AG, Morignat E, Verchere J, et al. A C-terminal protease-resistant prion fragment distinguishes ovine "CH1641-like" scrapie from bovine classical and L-Type BSE in ovine transgenic mice. PLoS Pathog. 2008;4(8):e1000137. doi: 10.1371/journal.ppat.1000137 18769714; PubMed Central PMCID: PMC2516186.

38. Baron T, Biacabe AG. Molecular behaviors of "CH1641-like" sheep scrapie isolates in ovine transgenic mice (TgOvPrP4). J Virol. 2007;81(13):7230–7. doi: 10.1128/JVI.02475-06 17442721; PubMed Central PMCID: PMC1933328.

39. Beck KE, Sallis RE, Lockey R, Vickery CM, Beringue V, Laude H, et al. Use of murine bioassay to resolve ovine transmissible spongiform encephalopathy cases showing a bovine spongiform encephalopathy molecular profile. Brain Pathol. 2012;22(3):265–79. Epub 2011/09/17. doi: 10.1111/j.1750-3639.2011.00526.x 21919992; PubMed Central PMCID: PMC3505794.

40. Dron M, Moudjou M, Chapuis J, Salamat MK, Bernard J, Cronier S, et al. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J Biol Chem. 2010;285(14):10252–64. doi: 10.1074/jbc.M109.083857 20154089; PubMed Central PMCID: PMC2856230.

41. Sarradin P, Viglietta C, Limouzin C, Andreoletti O, Daniel-Carlier N, Barc C, et al. Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie. PLoS Pathog. 2015;11(8):e1005077. doi: 10.1371/journal.ppat.1005077 26248157; PubMed Central PMCID: PMC4527776.

42. Langeveld JP, Jacobs JG, Erkens JH, Bossers A, van Zijderveld FG, van Keulen LJ. Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of sheep. BMC Vet Res. 2006;2:19. doi: 10.1186/1746-6148-2-19 16764717; PubMed Central PMCID: PMC1544330.

43. Kimberlin RH, Walker CA. Pathogenesis of experimental scrapie. Ciba Found Symp. 1988;135:37–62. doi: 10.1002/9780470513613.ch4 3137002.

44. Kimberlin RH, Walker CA. Pathogenesis of mouse scrapie: effect of route of inoculation on infectivity titres and dose-response curves. J Comp Pathol. 1978;88(1):39–47. Epub 1978/01/01. doi: 10.1016/0021-9975(78)90059-2 563870.

45. Kimberlin RH, Walker C. Characteristics of a short incubation model of scrapie in the golden hamster. J Gen Virol. 1977;34(2):295–304. Epub 1977/02/01. doi: 10.1099/0022-1317-34-2-295 402439

46. Kimberlin RH. Early events in the pathogenesis of scrapie in mice: biological and biochemical studies. In: Gajdusek DC, editor. Slow Transmissible disease of the nervous system. Volume 2. New-York: Academic Press; 1979. p. 33–54.

47. Lasmezas CI, Deslys JP, Demaimay R, Adjou KT, Hauw JJ, Dormont D. Strain specific and common pathogenic events in murine models of scrapie and bovine spongiform encephalopathy. J Gen Virol. 1996;77 (Pt 7):1601–9. Epub 1996/07/01. doi: 10.1099/0022-1317-77-7-1601 8758005.

48. Fraser H, Dickinson AG. Studies of the lymphoreticular system in the pathogenesis of scrapie: the role of spleen and thymus. J Comp Pathol. 1978;88(4):563–73. Epub 1978/10/01. doi: 10.1016/0021-9975(78)90010-5 101558

49. Baron T, Bencsik A, Morignat E. Prions of ruminants show distinct splenotropisms in an ovine transgenic mouse model. PLoS One. 2010;5(4):e10310. doi: 10.1371/journal.pone.0010310 20436680; PubMed Central PMCID: PMC2859945.

50. Bougard D, Brandel JP, Belondrade M, Beringue V, Segarra C, Fleury H, et al. Detection of prions in the plasma of presymptomatic and symptomatic patients with variant Creutzfeldt-Jakob disease. Sci Transl Med. 2016;8(370):370ra182. doi: 10.1126/scitranslmed.aag1257 28003547.

51. Davenport KA, Christiansen JR, Bian J, Young M, Gallegos J, Kim S, et al. Comparative analysis of prions in nervous and lymphoid tissues of chronic wasting disease-infected cervids. J Gen Virol. 2018. Epub 2018/03/28. doi: 10.1099/jgv.0.001053 29580373.

52. Polymenidou M, Stoeck K, Glatzel M, Vey M, Bellon A, Aguzzi A. Coexistence of multiple PrPSc types in individuals with Creutzfeldt-Jakob disease. Lancet Neurol. 2005;4(12):805–14. Epub 2005/11/22. doi: 10.1016/S1474-4422(05)70225-8 16297838.

53. Uro-Coste E, Cassard H, Simon S, Lugan S, Bilheude JM, Perret-Liaudet A, et al. Beyond PrP9res) type 1/type 2 dichotomy in Creutzfeldt-Jakob disease. PLoS Pathog. 2008;4(3):e1000029. Epub 2008/04/05. doi: 10.1371/journal.ppat.1000029 18389084; PubMed Central PMCID: PMC2279301.

54. Al-Dybiat I, Moudjou M, Martin D, Reine F, Herzog L, Truchet S, et al. Prion strain-dependent tropism is maintained between spleen and granuloma and relies on lymphofollicular structures. Sci Rep. 2019;9(1):14656. Epub 2019/10/12. doi: 10.1038/s41598-019-51084-1 31601984; PubMed Central PMCID: PMC6787085.

55. Cyster JG. B cell follicles and antigen encounters of the third kind. Nat Immunol. 2010;11(11):989–96. Epub 2010/10/21. doi: 10.1038/ni.1946 20959804.

56. Michel B, Meyerett-Reid C, Johnson T, Ferguson A, Wyckoff C, Pulford B, et al. Incunabular immunological events in prion trafficking. Sci Rep. 2012;2:440. Epub 2012/06/09. doi: 10.1038/srep00440 22679554; PubMed Central PMCID: PMC3368226.

57. Igel-Egalon A, Moudjou M, Martin D, Busley A, Knapple T, Herzog L, et al. Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick. PLoS Pathog. 2017;13(9):e1006557. Epub 2017/09/08. doi: 10.1371/journal.ppat.1006557 28880932; PubMed Central PMCID: PMC5589264.

58. Ierna M, Farquhar CF, Outram GW, Bruce ME. Resistance of neonatal mice to scrapie is associated with inefficient infection of the immature spleen. J Virol. 2006;80(1):474–82. Epub 2005/12/15. doi: 10.1128/JVI.80.1.474-482.2006 16352571; PubMed Central PMCID: PMC1317550.

59. Brown KL, Wathne GJ, Sales J, Bruce ME, Mabbott NA. The effects of host age on follicular dendritic cell status dramatically impair scrapie agent neuroinvasion in aged mice. J Immunol. 2009;183(8):5199–207. Epub 2009/09/30. doi: 10.4049/jimmunol.0802695 19786551.

60. Heikenwalder M, Zeller N, Seeger H, Prinz M, Klohn PC, Schwarz P, et al. Chronic lymphocytic inflammation specifies the organ tropism of prions. Science. 2005;307(5712):1107–10. Epub 2005/01/22. doi: 10.1126/science.1106460 15661974.

61. Mabbott NA, Bruce ME, Botto M, Walport MJ, Pepys MB. Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nat Med. 2001;7(4):485–7. Epub 2001/04/03. doi: 10.1038/86562 11283677.

62. Brown KL, Gossner A, Mok S, Mabbott NA. The effects of host age on the transport of complement-bound complexes to the spleen and the pathogenesis of intravenous scrapie infection. J Virol. 2012;86(1):25–35. Epub 2011/10/28. doi: 10.1128/JVI.05581-11 22031932; PubMed Central PMCID: PMC3255866.

63. Kane SJ, Farley TK, Gordon EO, Estep J, Bender HR, Moreno JA, et al. Complement Regulatory Protein Factor H Is a Soluble Prion Receptor That Potentiates Peripheral Prion Pathogenesis. J Immunol. 2017;199(11):3821–7. Epub 2017/10/27. doi: 10.4049/jimmunol.1701100 29070671; PubMed Central PMCID: PMC5698161.

64. Guillerme-Bosselut F, Forestier L, Jayat-Vignoles C, Vilotte JL, Popa I, Portoukalian J, et al. Glycosylation-related gene expression profiling in the brain and spleen of scrapie-affected mouse. Glycobiology. 2009;19(8):879–89. doi: 10.1093/glycob/cwp062 19386898.

65. Katorcha E, Makarava N, Savtchenko R, D'Azzo A, Baskakov IV. Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity. PLoS Pathog. 2014;10(9):e1004366. doi: 10.1371/journal.ppat.1004366 25211026; PubMed Central PMCID: PMC4161476.

66. Lotscher M, Recher M, Hunziker L, Klein MA. Immunologically induced, complement-dependent up-regulation of the prion protein in the mouse spleen: follicular dendritic cells versus capsule and trabeculae. J Immunol. 2003;170(12):6040–7. Epub 2003/06/10. doi: 10.4049/jimmunol.170.12.6040 12794132.

67. Shikiya RA, Ayers JI, Schutt CR, Kincaid AE, Bartz JC. Coinfecting prion strains compete for a limiting cellular resource. J Virol. 2010;84(11):5706–14. Epub 2010/03/20. doi: 10.1128/JVI.00243-10 20237082; PubMed Central PMCID: PMC2876617.

68. Mays CE, Kim C, Haldiman T, van der Merwe J, Lau A, Yang J, et al. Prion disease tempo determined by host-dependent substrate reduction. J Clin Invest. 2014;124(2):847–58. doi: 10.1172/JCI72241 24430187; PubMed Central PMCID: PMC3904628.

69. Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol. 1999;46(2):224–33. Epub 1999/08/12. 10443888.

70. Head MW, Ironside JW. The contribution of different prion protein types and host polymorphisms to clinicopathological variations in Creutzfeldt-Jakob disease. Rev Med Virol. 2012;22(4):214–29. Epub 2012/03/01. doi: 10.1002/rmv.725 22374623.

71. Vilotte JL, Soulier S, Essalmani R, Stinnakre MG, Vaiman D, Lepourry L, et al. Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing ovine prp. J Virol. 2001;75(13):5977–84. doi: 10.1128/JVI.75.13.5977-5984.2001 11390599; PubMed Central PMCID: PMC114313.

72. Feraudet C, Morel N, Simon S, Volland H, Frobert Y, Creminon C, et al. Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem. 2005;280(12):11247–58. Epub 2004/12/25. doi: 10.1074/jbc.M407006200 15618225.

73. Le Dur A, Beringue V, Andreoletti O, Reine F, Lai TL, Baron T, et al. A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes. Proc Natl Acad Sci U S A. 2005;102(44):16031–6. Epub 2005/10/22. 0502296102 [pii] doi: 10.1073/pnas.0502296102 16239348; PubMed Central PMCID: PMC1276041.

74. Krasemann S, Groschup MH, Harmeyer S, Hunsmann G, Bodemer W. Generation of monoclonal antibodies against human prion proteins in PrP0/0 mice. Mol Med. 1996;2(6):725–34. Epub 1996/11/01. 8972487; PubMed Central PMCID: PMC2230140.

75. Wadsworth JD, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, et al. Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet. 2001;358(9277):171–80. Epub 2001/07/31. doi: 10.1016/s0140-6736(01)05403-4 11476832.

76. Bencsik A, Baron T. Bovine spongiform encephalopathy agent in a prion protein (PrP)ARR/ARR genotype sheep after peripheral challenge: complete immunohistochemical analysis of disease-associated PrP and transmission studies to ovine-transgenic mice. J Infect Dis. 2007;195(7):989–96. Epub 2007/03/03. doi: 10.1086/512087 17330789.


Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 7

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se