-
Články
- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays
Autoři: Annick Guiseppi aff001; Juan Jesus Vicente aff002; Julien Herrou aff001; Deborah Byrne aff003; Aurelie Barneoud aff001; Audrey Moine aff001; Leon Espinosa aff001; Marie-Jeanne Basse aff004; Virginie Molle aff005; Tâm Mignot aff001; Philippe Roche aff004; Emilia M. F. Mauriello aff001
Působiště autorů: Laboratoire de Chimie Bactérienne, Aix Marseille Univ, CNRS, Marseille, France aff001; Physiology & Biophysics, University of Washington, Seattle, WA, United States of America aff002; Protein Purification Platform, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France aff003; CRCM, Institute Paoli-Calmettes, CNRS, INSERM, Aix Marseille Univ, Marseille, France aff004; Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologique, Montpellier II et I University, CNRS, France aff005
Vyšlo v časopise: A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008533
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008533Souhrn
Chemosensory systems are highly organized signaling pathways that allow bacteria to adapt to environmental changes. The Frz chemosensory system from M. xanthus possesses two CheW-like proteins, FrzA (the core CheW) and FrzB. We found that FrzB does not interact with FrzE (the cognate CheA) as it lacks the amino acid region responsible for this interaction. FrzB, instead, acts upstream of FrzCD in the regulation of M. xanthus chemotaxis behaviors and activates the Frz pathway by allowing the formation and distribution of multiple chemosensory clusters on the nucleoid. These results, together, show that the lack of the CheA-interacting region in FrzB confers new functions to this small protein.
Klíčová slova:
Cell fusion – Cell motility – Crystal structure – Fluorescence microscopy – Histidine – Phosphorylation – Protein structure – Protein structure comparison
Zdroje
1. Sourjik V, Berg HC. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 2002;99 : 12669–12674. doi: 10.1073/pnas.192463199 12232047
2. Berleman JE, Bauer CE. Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum. Mol Microbiol. 2005;56 : 1457–1466. doi: 10.1111/j.1365-2958.2005.04646.x 15916598
3. Bible A, Russell MH, Alexandre G. The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping. J Bacteriol. 2012;194 : 3343–3355. doi: 10.1128/JB.00310-12 22522896
4. Collins KD, Lacal J, Ottemann KM. Internal sense of direction: sensing and signaling from cytoplasmic chemoreceptors. Microbiol Mol Biol Rev MMBR. 2014;78 : 672–684. doi: 10.1128/MMBR.00033-14 25428939
5. Bilwes AM, Alex LA, Crane BR, Simon MI. Structure of CheA, a signal-transducing histidine kinase. Cell. 1999;96 : 131–141. doi: 10.1016/s0092-8674(00)80966-6 9989504
6. Griswold IJ, Zhou H, Matison M, Swanson RV, McIntosh LP, Simon MI, et al. The solution structure and interactions of CheW from Thermotoga maritima. Nat Struct Biol. 2002;9 : 121–125. doi: 10.1038/nsb753 11799399
7. Reebye V, Frilling A, Hajitou A, Nicholls JP, Habib NA, Mintz PJ. A perspective on non-catalytic Src homology (SH) adaptor signalling proteins. Cell Signal. 2012;24 : 388–392. doi: 10.1016/j.cellsig.2011.10.003 22024281
8. Li X, Fleetwood AD, Bayas C, Bilwes AM, Ortega DR, Falke JJ, et al. The 3.2 Å resolution structure of a receptor: CheA:CheW signaling complex defines overlapping binding sites and key residue interactions within bacterial chemosensory arrays. Biochemistry. 2013;52 : 3852–3865. doi: 10.1021/bi400383e 23668907
9. Khursigara CM, Wu X, Subramaniam S. Chemoreceptors in Caulobacter crescentus: trimers of receptor dimers in a partially ordered hexagonally packed array. J Bacteriol. 2008;190 : 6805–6810. doi: 10.1128/JB.00640-08 18689468
10. Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z, Chen S, et al. Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci U S A. 2009;106 : 17181–17186. doi: 10.1073/pnas.0905181106 19805102
11. Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR. Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci U S A. 2012;109 : 3766–3771. doi: 10.1073/pnas.1115719109 22355139
12. Sourjik V, Berg HC. Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol. 2000;37 : 740–751. doi: 10.1046/j.1365-2958.2000.02044.x 10972797
13. Wadhams GH, Martin AC, Warren AV, Armitage JP. Requirements for chemotaxis protein localization in Rhodobacter sphaeroides. Mol Microbiol. 2005;58 : 895–902. doi: 10.1111/j.1365-2958.2005.04880.x 16238635
14. Sourjik V, Berg HC. Functional interactions between receptors in bacterial chemotaxis. Nature. 2004;428 : 437–441. doi: 10.1038/nature02406 15042093
15. Ames P, Parkinson JS. Conformational suppression of inter-receptor signaling defects. Proc Natl Acad Sci U S A. 2006;103 : 9292–9297. doi: 10.1073/pnas.0602135103 16751275
16. Li M, Hazelbauer GL. Selective allosteric coupling in core chemotaxis signaling complexes. Proc Natl Acad Sci U S A. 2014;111 : 15940–15945. doi: 10.1073/pnas.1415184111 25349385
17. Piñas GE, Frank V, Vaknin A, Parkinson JS. The source of high signal cooperativity in bacterial chemosensory arrays. Proc Natl Acad Sci U S A. 2016;113 : 3335–3340. doi: 10.1073/pnas.1600216113 26951681
18. Blackhart BD, Zusman DR. “Frizzy” genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci U S A. 1985;82 : 8767–8770. doi: 10.1073/pnas.82.24.8767 3936045
19. Treuner-Lange A, Macia E, Guzzo M, Hot E, Faure LM, Jakobczak B, et al. The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions. J Cell Biol. 2015;210 : 243–256. doi: 10.1083/jcb.201412047 26169353
20. Guzzo M, Agrebi R, Espinosa L, Baronian G, Molle V, Mauriello EMF, et al. Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway. PLoS Genet. 2015;11: e1005460. doi: 10.1371/journal.pgen.1005460 26291327
21. Chang Y-W, Rettberg LA, Treuner-Lange A, Iwasa J, Søgaard-Andersen L, Jensen GJ. Architecture of the type IVa pilus machine. Science. 2016;351: aad2001. doi: 10.1126/science.aad2001 26965631
22. Bustamante VH, Martinez-Flores I, Vlamakis HC, Zusman DR. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol Microbiol. 2004;53 : 1501–13. doi: 10.1111/j.1365-2958.2004.04221.x 15387825
23. Mauriello EMF, Jones C, Moine A, Armitage JP. Cellular targeting and segregation of bacterial chemosensory systems. FEMS Microbiol Rev. 2018;42 : 462–476. doi: 10.1093/femsre/fuy015 29945173
24. McBride MJ, Weinberg RA, Zusman DR. “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc Natl Acad Sci U S A. 1989;86 : 424–428. doi: 10.1073/pnas.86.2.424 2492105
25. Concepcion J, Witte K, Wartchow C, Choo S, Yao D, Persson H, et al. Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb Chem High Throughput Screen. 2009;12 : 791–800. doi: 10.2174/138620709789104915 19758119
26. Inclán YF, Vlamakis HC, Zusman DR. FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. Mol Microbiol. 2007;65 : 90–102. doi: 10.1111/j.1365-2958.2007.05774.x 17581122
27. Kaimer C, Zusman DR. Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY-like domains in FrzE and FrzZ. Mol Microbiol. 2016;100 : 379–395. doi: 10.1111/mmi.13323 26748740
28. Moine A, Espinosa L, Martineau E, Yaikhomba M, Jazleena PJ, Byrne D, et al. The nucleoid as a scaffold for the assembly of bacterial signaling complexes. PLOS Genet. 2017;13: e1007103. doi: 10.1371/journal.pgen.1007103 29161263
29. Liu J, Hu B, Morado DR, Jani S, Manson MD, Margolin W. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci U S A. 2012;109: E1481–1488. doi: 10.1073/pnas.1200781109 22556268
30. Cassidy CK, Himes BA, Alvarez FJ, Ma J, Zhao G, Perilla JR, et al. CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling. eLife. 2015;4. doi: 10.7554/eLife.08419 26583751
31. Moine A, Agrebi R, Espinosa L, Kirby JR, Zusman DR, Mignot T, et al. Functional organization of a multimodular bacterial chemosensory apparatus. PLoS Genet. 2014;10: e1004164. doi: 10.1371/journal.pgen.1004164 24603697
32. Adams DW, Wu LJ, Errington J. Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. EMBO J. 2015;34 : 491–501. doi: 10.15252/embj.201490177 25568309
33. McBride MJ, Köhler T, Zusman DR. Methylation of FrzCD, a methyl-accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behavior. J Bacteriol. 1992;174 : 4246–4257. doi: 10.1128/jb.174.13.4246-4257.1992 1624419
34. Mauriello EMF, Nan B, Zusman DR. AglZ regulates adventurous (A-) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol. 2009;72 : 964–977. doi: 10.1111/j.1365-2958.2009.06697.x 19400788
35. Nan B, Mauriello EMF, Sun I-H, Wong A, Zusman DR. A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol. 2010;76 : 1539–1554. doi: 10.1111/j.1365-2958.2010.07184.x 20487265
36. Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 2008;36: W197–W201. doi: 10.1093/nar/gkn238 18463136
37. Sievers F, Higgins DG. Clustal omega. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al. 2014;48 : 3.13.1–16. doi: 10.1002/0471250953.bi0313s48 25501942
38. Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al. 2016;54 : 5.6.1–5.6.37. doi: 10.1002/cpbi.3 27322406
39. Park S-Y, Borbat PP, Gonzalez-Bonet G, Bhatnagar J, Pollard AM, Freed JH, et al. Reconstruction of the chemotaxis receptor-kinase assembly. Nat Struct Mol Biol. 2006;13 : 400–407. doi: 10.1038/nsmb1085 16622408
40. Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004;60 : 2256–2268. doi: 10.1107/S0907444904026460 15572779
41. Gouet P, Robert X, Courcelle E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 2003;31 : 3320–3323. doi: 10.1093/nar/gkg556 12824317
42. Mignot T, Merlie JP, Zusman DR. Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science. 2005;310 : 855–7. doi: 10.1126/science.1119052 16272122
43. Ducret A, Maisonneuve E, Notareschi P, Grossi A, Mignot T, Dukan S. A microscope automated fluidic system to study bacterial processes in real time. PloS One. 2009;4: e7282. doi: 10.1371/journal.pone.0007282 19789641
44. Ducret A, Quardokus EM, Brun YV. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat Microbiol. 2016;1 : 16077. doi: 10.1038/nmicrobiol.2016.77 27572972
Štítky
Genetika Reprodukční medicína
Článek A transcriptome-based signature of pathological angiogenesis predicts breast cancer patient survivalČlánek Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathwayČlánek A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivityČlánek Genetic determinants of genus—Level glycan diversity in a bacterial protein glycosylation system
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2019 Číslo 12
-
Všechny články tohoto čísla
- Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives
- Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content
- A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes
- A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21
- Experimental population modification of the malaria vector mosquito, Anopheles stephensi
- The polyamine transporter Slc18b1(VPAT) is important for both short and long time memory and for regulation of polyamine content in the brain
- Architecture of the Escherichia coli nucleoid
- Inhibition of FLT1 ameliorates muscular dystrophy phenotype by increased vasculature in a mouse model of Duchenne muscular dystrophy
- Leveraging allelic imbalance to refine fine-mapping for eQTL studies
- A transcriptome-based signature of pathological angiogenesis predicts breast cancer patient survival
- An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior
- Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval
- Modulators of hormonal response regulate temporal fate specification in the Drosophila brain
- Common alleles of CMT2 and NRPE1 are major determinants of CHH methylation variation in Arabidopsis thaliana
- Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism
- Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations
- The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor
- Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging
- Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathway
- Mediator subunit MDT-15/MED15 and Nuclear Receptor HIZR-1/HNF4 cooperate to regulate toxic metal stress responses in Caenorhabditis elegans
- Identification of avoidance genes through neural pathway-specific forward optogenetics
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Drosophila RpS12 controls translation, growth, and cell competition through Xrp1
- An MCM family protein promotes interhomolog recombination by preventing precocious intersister repair of meiotic DSBs
- Correction: Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria
- Hybridization promotes asexual reproduction in Caenorhabditis nematodes
- Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization
- Genome wide analysis reveals heparan sulfate epimerase modulates TDP-43 proteinopathy
- A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity
- Genetic variation in GC and CYP2R1 affects 25-hydroxyvitamin D concentration and skeletal parameters: A genome-wide association study in 24-month-old Finnish children
- Genetic determinants of genus—Level glycan diversity in a bacterial protein glycosylation system
- A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays
- Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes
- APOBEC3A is a prominent cytidine deaminase in breast cancer
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Zfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage
- CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4
- Correction: Origins of DNA replication
- Characterization of Aspergillus nidulans TRAPPs uncovers unprecedented similarities between fungi and metazoans and reveals the modular assembly of TRAPPII
- BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana
- Cell elimination strategies upon identity switch via modulation of apterous in Drosophila wing disc
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- Architecture of the Escherichia coli nucleoid
- APOBEC3A is a prominent cytidine deaminase in breast cancer
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Autoři: prof. MUDr. Hana Rosolová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání