bsAS, an antisense long non-coding RNA, essential for correct wing development through regulation of blistered/DSRF isoform usage
Autoři:
Sílvia Pérez-Lluch aff001; Cecilia C. Klein aff001; Alessandra Breschi aff001; Marina Ruiz-Romero aff001; Amaya Abad aff001; Emilio Palumbo aff001; Lyazzat Bekish aff001; Carme Arnan aff001; Roderic Guigó aff001
Působiště autorů:
Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Catalonia, Spain
aff001; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
aff002; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
aff003
Vyšlo v časopise:
bsAS, an antisense long non-coding RNA, essential for correct wing development through regulation of blistered/DSRF isoform usage. PLoS Genet 16(12): e1009245. doi:10.1371/journal.pgen.1009245
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009245
Souhrn
Natural Antisense Transcripts (NATs) are long non-coding RNAs (lncRNAs) that overlap coding genes in the opposite strand. NATs roles have been related to gene regulation through different mechanisms, including post-transcriptional RNA processing. With the aim to identify NATs with potential regulatory function during fly development, we generated RNA-Seq data in Drosophila developing tissues and found bsAS, one of the most highly expressed lncRNAs in the fly wing. bsAS is antisense to bs/DSRF, a gene involved in wing development and neural processes. bsAS plays a crucial role in the tissue specific regulation of the expression of the bs/DSRF isoforms. This regulation is essential for the correct determination of cell fate during Drosophila development, as bsAS knockouts show highly aberrant phenotypes. Regulation of bs isoform usage by bsAS is mediated by specific physical interactions between the promoters of these two genes, which suggests a regulatory mechanism involving the collision of RNA polymerases transcribing in opposite directions. Evolutionary analysis suggests that bsAS NAT emerged simultaneously to the long-short isoform structure of bs, preceding the emergence of wings in insects.
Klíčová slova:
Animal wings – Drosophila melanogaster – Eyes – Gene expression – Imaginal discs – Invertebrate genomics – Larvae – Long non-coding RNA
Zdroje
1. Werner A, Sayer JA. Naturally occurring antisense RNA: function and mechanisms of action. Curr Opin Nephrol Hypertens. 2009;18: 343–349. doi: 10.1097/MNH.0b013e32832cb982 19491676
2. Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol. 2009;10: 637–643. doi: 10.1038/nrm2738 19638999
3. Pelechano V, Steinmetz LM. Gene regulation by antisense transcription. Nat Rev Genet. 2013;14: 880–893. doi: 10.1038/nrg3594 24217315
4. Khorkova O, Myers AJ, Hsiao J, Wahlestedt C. Natural antisense transcripts. Hum Mol Genet. 2014;23: R54–63. doi: 10.1093/hmg/ddu207 24838284
5. Morrissy AS, Griffith M, Marra MA. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res. 2011;21: 1203–1212. doi: 10.1101/gr.113431.110 21719572
6. Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 2008;22: 756–769. doi: 10.1101/gad.455708 18347095
7. Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ, et al. FlyBase: establishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Res. 2016;44: D786–792. doi: 10.1093/nar/gkv1046 26467478
8. Ilik I, Akhtar A. roX RNAs: non-coding regulators of the male X chromosome in flies. RNA Biol. 2009;6: 113–121. doi: 10.4161/rna.6.2.8060 19229132
9. Maeda RK, Sitnik JL, Frei Y, Prince E, Gligorov D, Wolfner MF, et al. The lncRNA male-specific abdominal plays a critical role in Drosophila accessory gland development and male fertility. PLoS Genet. 2018;14: e1007519. doi: 10.1371/journal.pgen.1007519 30011265
10. Ruiz-Losada M, Blom-Dahl D, Cordoba S, Estella C. Specification and Patterning of Drosophila Appendages. J Dev Biol. 2018;6.
11. Garcia-Bellido A, de Celis JF. Developmental genetics of the venation pattern of Drosophila. Annu Rev Genet. 1992;26: 277–304. doi: 10.1146/annurev.ge.26.120192.001425 1482114
12. Fristrom D, Gotwals P, Eaton S, Kornberg TB, Sturtevant M, Bier E, et al. Blistered: a gene required for vein/intervein formation in wings of Drosophila. Development. 1994;120: 2661–2671. 7956840
13. Montagne J, Groppe J, Guillemin K, Krasnow MA, Gehring WJ, Affolter M. The Drosophila Serum Response Factor gene is required for the formation of intervein tissue of the wing and is allelic to blistered. Development. 1996;122: 2589–2597. 8787734
14. Roch F, Baonza A, Martin-Blanco E, Garcia-Bellido A. Genetic interactions and cell behaviour in blistered mutants during proliferation and differentiation of the Drosophila wing. Development. 1998;125: 1823–1832. 9550715
15. Donlea JM, Ramanan N, Shaw PJ. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science. 2009;324: 105–108. doi: 10.1126/science.1166657 19342592
16. Thran J, Poeck B, Strauss R. Serum response factor-mediated gene regulation in a Drosophila visual working memory. Curr Biol. 2013;23: 1756–1763. doi: 10.1016/j.cub.2013.07.034 24012317
17. Coletti D, Daou N, Hassani M, Li Z, Parlakian A. Serum Response Factor in Muscle Tissues: From Development to Ageing. Eur J Transl Myol. 2016;26: 6008. doi: 10.4081/ejtm.2016.6008 27478561
18. Benito E, Barco A. The neuronal activity-driven transcriptome. Mol Neurobiol. 2015;51: 1071–1088. doi: 10.1007/s12035-014-8772-z 24935719
19. Perez-Lluch S, Blanco E, Carbonell A, Raha D, Snyder M, Serras F, et al. Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing. Nucleic Acids Res. 2011;39: 4628–4639. doi: 10.1093/nar/gkq1322 21310711
20. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 2013;194: 1029–1035. doi: 10.1534/genetics.113.152710 23709638
21. Naumova N, Smith EM, Zhan Y, Dekker J. Analysis of long-range chromatin interactions using Chromosome Conformation Capture. Methods. 2012;58: 192–203. doi: 10.1016/j.ymeth.2012.07.022 22903059
22. dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA, Thurmond J, et al. FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res. 2015;43: D690–697. doi: 10.1093/nar/gku1099 25398896
23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29: 15–21. doi: 10.1093/bioinformatics/bts635 23104886
24. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12: 323. doi: 10.1186/1471-2105-12-323 21816040
25. Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, et al. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics. 2014;30: 1003–1005. doi: 10.1093/bioinformatics/btt637 24227676
26. Pohl A, Beato M. bwtool: a tool for bigWig files. Bioinformatics. 2014;30: 1618–1619. doi: 10.1093/bioinformatics/btu056 24489365
27. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26: 139–140. doi: 10.1093/bioinformatics/btp616 19910308
28. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23: 257–258. doi: 10.1093/bioinformatics/btl567 17098774
29. Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6: e21800. doi: 10.1371/journal.pone.0021800 21789182
30. Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003;31: 3651–3653. doi: 10.1093/nar/gkg605 12824386
31. Oh H, Slattery M, Ma L, Crofts A, White KP, Mann RS, et al. Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes. Cell Rep. 2013;3: 309–318. doi: 10.1016/j.celrep.2013.01.008 23395637
32. Schertel C, Albarca M, Rockel-Bauer C, Kelley NW, Bischof J, Hens K, et al. A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development. Genome Res. 2015;25: 514–523. doi: 10.1101/gr.181305.114 25568052
33. Loubiere V, Delest A, Thomas A, Bonev B, Schuettengruber B, Sati S, et al. Coordinate redeployment of PRC1 proteins suppresses tumor formation during Drosophila development. Nat Genet. 2016;48: 1436–1442. doi: 10.1038/ng.3671 27643538
34. Marco-Sola S, Sammeth M, Guigo R, Ribeca P. The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods. 2012;9: 1185–1188. doi: 10.1038/nmeth.2221 23103880
35. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2018;46: D794–D801. doi: 10.1093/nar/gkx1081 29126249
36. Chen ZX, Sturgill D, Qu J, Jiang H, Park S, Boley N, et al. Comparative validation of the D. melanogaster modENCODE transcriptome annotation. Genome Res. 2014;24: 1209–1223. doi: 10.1101/gr.159384.113 24985915
37. Mao W, Schuler MA, Berenbaum MR. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). Proc Natl Acad Sci U S A. 2017;114: 2538–2543. doi: 10.1073/pnas.1614864114 28193870
38. Shpigler HY, Saul MC, Corona F, Block L, Cash Ahmed A, Zhao SD, et al. Deep evolutionary conservation of autism-related genes. Proc Natl Acad Sci U S A. 2017;114: 9653–9658. doi: 10.1073/pnas.1708127114 28760967
39. Garrido-Martin D, Palumbo E, Guigo R, Breschi A. ggsashimi: Sashimi plot revised for browser- and annotation-independent splicing visualization. PLoS Comput Biol. 2018;14: e1006360. doi: 10.1371/journal.pcbi.1006360 30118475
40. Vannini L, Augustine Dunn W, Reed TW, Willis JH. Changes in transcript abundance for cuticular proteins and other genes three hours after a blood meal in Anopheles gambiae. Insect Biochem Mol Biol. 2014;44: 33–43. doi: 10.1016/j.ibmb.2013.11.002 24269292
41. Gomez-Diaz E, Rivero A, Chandre F, Corces VG. Insights into the epigenomic landscape of the human malaria vector Anopheles gambiae. Front Genet. 2014;5: 277. doi: 10.3389/fgene.2014.00277 25177345
42. Cameron RC, Duncan EJ, Dearden PK. Biased gene expression in early honeybee larval development. BMC Genomics. 2013;14: 903. doi: 10.1186/1471-2164-14-903 24350621
43. Galbraith DA, Yang X, Nino EL, Yi S, Grozinger C. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLoS Pathog. 2015;11: e1004713. doi: 10.1371/journal.ppat.1004713 25811620
44. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature. 2011;479: 487–492. doi: 10.1038/nature10640 22113690
45. Van Leeuwen T, Demaeght P, Osborne EJ, Dermauw W, Gohlke S, Nauen R, et al. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proc Natl Acad Sci U S A. 2012;109: 4407–4412. doi: 10.1073/pnas.1200068109 22393009
46. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490: 49–54. doi: 10.1038/nature11413 22992520
47. Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338: 1587–1593. doi: 10.1126/science.1230612 23258890
48. Schwaiger M, Schonauer A, Rendeiro AF, Pribitzer C, Schauer A, Gilles AF, et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 2014;24: 639–650. doi: 10.1101/gr.162529.113 24642862
49. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2018.
50. Lapidot M, Pilpel Y. Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep. 2006;7: 1216–1222. doi: 10.1038/sj.embor.7400857 17139297
51. Sun M, Hurst LD, Carmichael GG, Chen J. Evidence for variation in abundance of antisense transcripts between multicellular animals but no relationship between antisense transcriptionand organismic complexity. Genome Res. 2006;16: 922–933. doi: 10.1101/gr.5210006 16769979
52. Li A, Ahsen OO, Liu JJ, Du C, McKee ML, Yang Y, et al. Silencing of the Drosophila ortholog of SOX5 in heart leads to cardiac dysfunction as detected by optical coherence tomography. Hum Mol Genet. 2013;22: 3798–3806. doi: 10.1093/hmg/ddt230 23696452
53. Andres AJ, Fletcher JC, Karim FD, Thummel CS. Molecular analysis of the initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription. Dev Biol. 1993;160: 388–404. doi: 10.1006/dbio.1993.1315 8253272
54. Moore JT, Fristrom D, Hammonds AS, Fristrom JW. Characterization of IMP-E3, a gene active during imaginal disc morphogenesis in Drosophila melanogaster. Dev Genet. 1990;11: 299–309. doi: 10.1002/dvg.1020110409 2128624
55. Paine-Saunders S, Fristrom D, Fristrom JW. The Drosophila IMP-E2 gene encodes an apically secreted protein expressed during imaginal disc morphogenesis. Dev Biol. 1990;140: 337–351. doi: 10.1016/0012-1606(90)90084-v 2115480
56. Brabant MC, Fristrom D, Bunch TA, Brower DL. Distinct spatial and temporal functions for PS integrins during Drosophila wing morphogenesis. Development. 1996;122: 3307–3317. 8898242
57. Roch F, Alonso CR, Akam M. Drosophila miniature and dusky encode ZP proteins required for cytoskeletal reorganisation during wing morphogenesis. J Cell Sci. 2003;116: 1199–1207. doi: 10.1242/jcs.00298 12615963
58. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 2000;101: 671–684. doi: 10.1016/s0092-8674(00)80878-8 10892653
59. Tadros W, Xu S, Akin O, Yi CH, Shin GJ, Millard SS, et al. Dscam Proteins Direct Dendritic Targeting through Adhesion. Neuron. 2016;89: 480–493. doi: 10.1016/j.neuron.2015.12.026 26844831
60. Pak WL, Shino S, Leung HT. PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina's and ina's—pinta and santa maria, too. J Neurogenet. 2012;26: 216–237. doi: 10.3109/01677063.2011.642430 22283778
61. Cubenas-Potts C, Rowley MJ, Lyu X, Li G, Lei EP, Corces VG. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Nucleic Acids Res. 2017;45: 1714–1730. doi: 10.1093/nar/gkw1114 27899590
62. Duff MO, Olson S, Wei X, Garrett SC, Osman A, Bolisetty M, et al. Genome-wide identification of zero nucleotide recursive splicing in Drosophila. Nature. 2015;521: 376–379. doi: 10.1038/nature14475 25970244
63. Washington NL, Stinson EO, Perry MD, Ruzanov P, Contrino S, Smith R, et al. The modENCODE Data Coordination Center: lessons in harvesting comprehensive experimental details. Database (Oxford). 2011;2011: bar023. doi: 10.1093/database/bar023 21856757
64. Marques AC, Ponting CP. Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol. 2009;10: R124. doi: 10.1186/gb-2009-10-11-r124 19895688
65. Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 2006;22: 1–5. doi: 10.1016/j.tig.2005.10.003 16290135
66. Nussbaumer U, Halder G, Groppe J, Affolter M, Montagne J. Expression of the blistered/DSRF gene is controlled by different morphogens during Drosophila trachea and wing development. Mech Dev. 2000;96: 27–36. doi: 10.1016/s0925-4773(00)00373-7 10940622
67. Halder G, Polaczyk P, Kraus ME, Hudson A, Kim J, Laughon A, et al. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes Dev. 1998;12: 3900–3909. doi: 10.1101/gad.12.24.3900 9869643
68. Rosikiewicz W, Makalowska I. Biological functions of natural antisense transcripts. Acta Biochim Pol. 2016;63: 665–673. doi: 10.18388/abp.2016_1350 27770572
69. Affolter M, Montagne J, Walldorf U, Groppe J, Kloter U, LaRosa M, et al. The Drosophila SRF homolog is expressed in a subset of tracheal cells and maps within a genomic region required for tracheal development. Development. 1994;120: 743–753. 7600954
70. Lomaev D, Mikhailova A, Erokhin M, Shaposhnikov AV, Moresco JJ, Blokhina T, et al. The GAGA factor regulatory network: Identification of GAGA factor associated proteins. PLoS One. 2017;12: e0173602. doi: 10.1371/journal.pone.0173602 28296955
71. Blanch M, Pineyro D, Bernues J. New insights for Drosophila GAGA factor in larvae. R Soc Open Sci. 2015;2: 150011. doi: 10.1098/rsos.150011 26064623
72. Bejarano F, Busturia A. Function of the Trithorax-like gene during Drosophila development. Dev Biol. 2004;268: 327–341. doi: 10.1016/j.ydbio.2004.01.006 15063171
73. Dorsett D. The Many Roles of Cohesin in Drosophila Gene Transcription. Trends Genet. 2019;35: 542–551. doi: 10.1016/j.tig.2019.04.002 31130395
74. Guillemin K, Groppe J, Ducker K, Treisman R, Hafen E, Affolter M, et al. The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development. 1996;122: 1353–1362. 8625824
75. Averof M, Cohen SM. Evolutionary origin of insect wings from ancestral gills. Nature. 1997;385: 627–630. doi: 10.1038/385627a0 9024659
76. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. 2016;3: 99–101. doi: 10.1016/j.cels.2015.07.012 27467250
77. Perez-Lluch S, Blanco E, Tilgner H, Curado J, Ruiz-Romero M, Corominas M, et al. Absence of canonical marks of active chromatin in developmentally regulated genes. Nat Genet. 2015;47: 1158–1167. doi: 10.1038/ng.3381 26280901
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 12
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Berberin: přírodní hypolipidemikum se slibnými výsledky
- Může slepičí polévka opravdu přispívat k uzdravení? Babiččin všelék z pohledu moderní vědy
Nejčtenější v tomto čísle
- Exploiting codon usage identifies intensity-specific modifiers of Ras/MAPK signaling in vivo
- Common maternal and fetal genetic variants show expected polygenic effects on risk of small- or large-for-gestational-age (SGA or LGA), except in the smallest 3% of babies
- Precision medicine in cats—The right biomedical model may not be the mouse!
- PEA15 loss of function and defective cerebral development in the domestic cat