#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An osteocalcin-deficient mouse strain without endocrine abnormalities


Autoři: Cassandra R. Diegel aff001;  Steven Hann aff002;  Ugur M. Ayturk aff002;  Jennifer C. W. Hu aff002;  Kyung-eun Lim aff004;  Casey J. Droscha aff001;  Zachary B. Madaj aff005;  Gabrielle E. Foxa aff001;  Isaac Izaguirre aff001;  VAI Vivarium and Transgenics Core aff006;  Noorulain Paracha aff007;  Bohdan Pidhaynyy aff007;  Terry L. Dowd aff008;  Alexander G. Robling aff004;  Matthew L. Warman aff002;  Bart O. Williams aff001
Působiště autorů: Program in Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, Michigan, United States of America aff001;  Orthopedic Research Labs, Boston Children’s Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America aff002;  Musculoskeletal Integrity Program, Hospital for Special Surgery Research Institute, New York, New York, United States of America aff003;  Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America aff004;  Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan, United States of America aff005;  Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, Michigan, United States of America aff006;  Department of Biology, Brooklyn College, Brooklyn, New York, United States of America aff007;  Department of Chemistry, Brooklyn College, Brooklyn, New York, United States of America aff008;  Ph.D. Program in Chemistry and Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, United States of America aff009
Vyšlo v časopise: An osteocalcin-deficient mouse strain without endocrine abnormalities. PLoS Genet 16(5): e32767. doi:10.1371/journal.pgen.1008361
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008361

Souhrn

Osteocalcin (OCN), the most abundant noncollagenous protein in the bone matrix, is reported to be a bone-derived endocrine hormone with wide-ranging effects on many aspects of physiology, including glucose metabolism and male fertility. Many of these observations were made using an OCN-deficient mouse allele (Osc) in which the 2 OCN-encoding genes in mice, Bglap and Bglap2, were deleted in ES cells by homologous recombination. Here we describe mice with a new Bglap and Bglap2 double-knockout (dko) allele (Bglap/2p.Pro25fs17Ter) that was generated by CRISPR/Cas9-mediated gene editing. Mice homozygous for this new allele do not express full-length Bglap or Bglap2 mRNA and have no immunodetectable OCN in their serum. FTIR imaging of cortical bone in these homozygous knockout animals finds alterations in the collagen maturity and carbonate to phosphate ratio in the cortical bone, compared with wild-type littermates. However, μCT and 3-point bending tests do not find differences from wild-type littermates with respect to bone mass and strength. In contrast to the previously reported OCN-deficient mice with the Oscallele, serum glucose levels and male fertility in the OCN-deficient mice with the Bglap/2pPro25fs17Ter allele did not have significant differences from wild-type littermates. We cannot explain the absence of endocrine effects in mice with this new knockout allele. Possible explanations include the effects of each mutated allele on the transcription of neighboring genes, or differences in genetic background and environment. So that our findings can be confirmed and extended by other interested investigators, we are donating this new Bglap and Bglap2 double-knockout strain to the Jackson Laboratories for academic distribution.

Klíčová slova:

Blood – Blood sugar – Bone imaging – Messenger RNA – Mouse models – Osteocalcin – RNA sequencing – Testosterone


Zdroje

1. Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016;82:42–9. Epub 2015/06/10. doi: 10.1016/j.bone.2015.05.046 26055108; PubMed Central PMCID: PMC4670816.

2. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047. Epub 1989/07/01. doi: 10.1152/physrev.1989.69.3.990 2664828.

3. Hoang QQ, Sicheri F, Howard AJ, Yang DS. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature. 2003;425(6961):977–80. Epub 2003/10/31. doi: 10.1038/nature02079 14586470.

4. Cleland TP, Thomas CJ, Gundberg CM, Vashishth D. Influence of carboxylation on osteocalcin detection by mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(19):2109–15. Epub 2016/07/30. doi: 10.1002/rcm.7692 27470908; PubMed Central PMCID: PMC5014568.

5. Cairns JR, Price PA. Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely gamma-carboxylated in humans. J Bone Miner Res. 1994;9(12):1989–97. Epub 1994/12/01. doi: 10.1002/jbmr.5650091220 7872066.

6. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382(6590):448–52. Epub 1996/08/01. doi: 10.1038/382448a0 8684484.

7. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69. Epub 2007/08/19. doi: 10.1016/j.cell.2007.05.047 17693256; PubMed Central PMCID: PMC2013746.

8. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5):796–809. Epub 2011/02/22. doi: 10.1016/j.cell.2011.02.004 21333348; PubMed Central PMCID: PMC3052787.

9. Oury F, Khrimian L, Denny CA, Gardin A, Chamouni A, Goeden N, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell. 2013;155(1):228–41. Epub 2013/10/01. doi: 10.1016/j.cell.2013.08.042 24074871; PubMed Central PMCID: PMC3864001.

10. Mera P, Laue K, Wei J, Berger JM, Karsenty G. Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol Metab. 2016;5(10):1042–7. Epub 2016/10/01. doi: 10.1016/j.molmet.2016.07.002 27689017; PubMed Central PMCID: PMC5034485.

11. Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galan-Diez M, et al. Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab. 2016;23(6):1078–92. Epub 2016/06/16. doi: 10.1016/j.cmet.2016.05.004 27304508; PubMed Central PMCID: PMC4910629.

12. Berger JM, Singh P, Khrimian L, Morgan DA, Chowdhury S, Arteaga-Solis E, et al. Mediation of the Acute Stress Response by the Skeleton. Cell Metab. 2019;30(5):890–902 e8. Epub 2019/09/17. doi: 10.1016/j.cmet.2019.08.012 31523009; PubMed Central PMCID: PMC6834912.

13. Obri A, Khrimian L, Karsenty G, Oury F. Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nat Rev Endocrinol. 2018;14(3):174–82. Epub 2018/01/30. doi: 10.1038/nrendo.2017.181 29376523; PubMed Central PMCID: PMC5958904.

14. Karsenty G. Update on the Biology of Osteocalcin. Endocr Pract. 2017;23(10):1270–4. Epub 2017/07/14. doi: 10.4158/EP171966.RA 28704102.

15. Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord. 2015;16(2):93–8. Epub 2015/01/13. doi: 10.1007/s11154-014-9307-7 25577163; PubMed Central PMCID: PMC4499327.

16. Karsenty G. Broadening the role of osteocalcin in Leydig cells. Endocrinology. 2014;155(11):4115–6. Epub 2014/10/18. doi: 10.1210/en.2014-1703 25325424; PubMed Central PMCID: PMC4197980.

17. Karsenty G, Oury F. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol. 2014;382(1):521–6. Epub 2013/10/23. doi: 10.1016/j.mce.2013.10.008 24145129; PubMed Central PMCID: PMC3850748.

18. Wei J, Hanna T, Suda N, Karsenty G, Ducy P. Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes. 2014;63(3):1021–31. Epub 2013/09/07. doi: 10.2337/db13-0887 24009262; PubMed Central PMCID: PMC3931403.

19. Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J, et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest. 2013;123(6):2421–33. Epub 2013/06/04. doi: 10.1172/JCI65952 23728177; PubMed Central PMCID: PMC3668813.

20. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50(2):568–75. Epub 2011/05/10. doi: 10.1016/j.bone.2011.04.017 21550430; PubMed Central PMCID: PMC3181267.

21. Williams BO, Warman ML. CRISPR/CAS9 Technologies. J Bone Miner Res. 2017;32(5):883–8. Epub 2017/02/24. doi: 10.1002/jbmr.3086 28230927; PubMed Central PMCID: PMC5413371.

22. Bailey S, Karsenty G, Gundberg C, Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci. 2017;1409(1):79–84. Epub 2017/10/19. doi: 10.1111/nyas.13470 29044594; PubMed Central PMCID: PMC5730490.

23. Boskey AL, Wians FH Jr., Hauschka PV. The effect of osteocalcin on in vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcif Tissue Int. 1985;37(1):57–62. Epub 1985/01/01. doi: 10.1007/BF02557680 3922598.

24. Berezovska O, Yildirim G, Budell WC, Yagerman S, Pidhaynyy B, Bastien C, et al. Osteocalcin affects bone mineral and mechanical properties in female mice. Bone. 2019;128:115031. Epub 2019/08/12. doi: 10.1016/j.bone.2019.08.004 31401301.

25. Janne M, Deol HK, Power SG, Yee SP, Hammond GL. Human sex hormone-binding globulin gene expression in transgenic mice. Mol Endocrinol. 1998;12(1):123–36. Epub 1998/01/24. doi: 10.1210/mend.12.1.0050 9440816.

26. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308. Epub 2010/07/27. doi: 10.1016/j.cell.2010.06.003 20655470; PubMed Central PMCID: PMC2910411.

27. Lambert LJ, Challa AK, Niu A, Zhou L, Tucholski J, Johnson MS, et al. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis Model Mech. 2016;9(10):1169–79. Epub 2016/08/03. doi: 10.1242/dmm.025247 27483347; PubMed Central PMCID: PMC5087831.

28. McKusick VA. Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet. 2007;80(4):588–604. Epub 2007/03/16. doi: 10.1086/514346 17357067; PubMed Central PMCID: PMC1852721.

29. Philippakis AA, Azzariti DR, Beltran S, Brookes AJ, Brownstein CA, Brudno M, et al. The Matchmaker Exchange: a platform for rare disease gene discovery. Hum Mutat. 2015;36(10):915–21. Epub 2015/08/22. doi: 10.1002/humu.22858 26295439; PubMed Central PMCID: PMC4610002.

30. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91. Epub 2016/08/19. doi: 10.1038/nature19057 27535533; PubMed Central PMCID: PMC5018207.

31. Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Methods Mol Biol. 2015;1239:197–217. Epub 2014/11/20. doi: 10.1007/978-1-4939-1862-1_10 25408407.

32. Kedlaya R, Veera S, Horan DJ, Moss RE, Ayturk UM, Jacobsen CM, et al. Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome. Sci Transl Med. 2013;5(211):211ra158. Epub 2013/11/15. doi: 10.1126/scitranslmed.3006627 24225945; PubMed Central PMCID: PMC3964772.

33. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468–86. Epub 2010/06/10. doi: 10.1002/jbmr.141 20533309.

34. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR, et al. Lrp5 functions in bone to regulate bone mass. Nature medicine. 2011;17(6):684–91. Epub 2011/05/24. doi: 10.1038/nm.2388 21602802; PubMed Central PMCID: PMC3113461.

35. Schriefer JL, Robling AG, Warden SJ, Fournier AJ, Mason JJ, Turner CH. A comparison of mechanical properties derived from multiple skeletal sites in mice. J Biomech. 2005;38(3):467–75. Epub 2005/01/18. doi: 10.1016/j.jbiomech.2004.04.020 15652544.

36. Gourion-Arsiquaud S, West PA, Boskey AL. Fourier transform-infrared microspectroscopy and microscopic imaging. Methods Mol Biol. 2008;455:293–303. Epub 2008/05/09. doi: 10.1007/978-1-59745-104-8_20 18463826.

37. Luke SG. Evaluating significance in linear mixed-effects models in R. Behav Res Methods. 2017;49(4):1494–502. Epub 2016/09/14. doi: 10.3758/s13428-016-0809-y 27620283.

38. Ayturk UM, Jacobsen CM, Christodoulou DC, Gorham J, Seidman JG, Seidman CE, et al. An RNA-seq protocol to identify mRNA expression changes in mouse diaphyseal bone: applications in mice with bone property altering Lrp5 mutations. J Bone Miner Res. 2013;28(10):2081–93. Epub 2013/04/05. doi: 10.1002/jbmr.1946 23553928; PubMed Central PMCID: PMC3743099.

39. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. Epub 2012/10/30. doi: 10.1093/bioinformatics/bts635 23104886; PubMed Central PMCID: PMC3530905.

40. Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338. Epub 2018/09/29. doi: 10.12688/f1000research.15931.2 30254741; PubMed Central PMCID: PMC6124377.

41. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5. Epub 2012/06/30. doi: 10.1093/bioinformatics/bts356 22743226.

42. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. Epub 2009/11/17. doi: 10.1093/bioinformatics/btp616 19910308; PubMed Central PMCID: PMC2796818.

43. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. Epub 2014/12/18. doi: 10.1186/s13059-014-0550-8 25516281; PubMed Central PMCID: PMC4302049.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Halitóza
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#