Obesity, clinical, and genetic predictors for glycemic progression in Chinese patients with type 2 diabetes: A cohort study using the Hong Kong Diabetes Register and Hong Kong Diabetes Biobank

Autoři: Guozhi Jiang aff001;  Andrea O. Luk aff001;  Claudia H. T. Tam aff001;  Eric S. Lau aff005;  Risa Ozaki aff001;  Elaine Y. K. Chow aff001;  Alice P. S. Kong aff001;  Cadmon K. P. Lim aff001;  Ka Fai Lee aff006;  Shing Chung Siu aff007;  Grace Hui aff007;  Chiu Chi Tsang aff008;  Kam Piu Lau aff009;  Jenny Y. Y. Leung aff010;  Man-wo Tsang aff011;  Grace Kam aff011;  Ip Tim Lau aff012;  June K. Li aff013;  Vincent T. Yeung aff014;  Emmy Lau aff015;  Stanley Lo aff015;  Samuel K. S. Fung aff016;  Yuk Lun Cheng aff017;  Chun Chung Chow aff001;  Ewan R. Pearson aff018;  Wing Yee So aff001;  Juliana C. N. Chan aff001;  Ronald C. W. Ma aff001;  ; 
Působiště autorů: Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China aff001;  Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China aff002;  Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China aff003;  CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China aff004;  Asia Diabetes Foundation, Hong Kong, China aff005;  Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong, China aff006;  Diabetes Centre, Tung Wah Eastern Hospital, Hong Kong, China aff007;  Diabetes and Education Centre, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China aff008;  North District Hospital, Hong Kong, China aff009;  Department of Medicine and Geriatrics, Ruttonjee Hospital, Hong Kong, China aff010;  Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, China aff011;  Tseung Kwan O Hospital, Hong Kong, China aff012;  Department of Medicine, Yan Chai Hospital, Hong Kong, China aff013;  Centre for Diabetes Education and Management, Our Lady of Maryknoll Hospital, Hong Kong, China aff014;  Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China aff015;  Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, China aff016;  Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China aff017;  Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom aff018
Vyšlo v časopise: Obesity, clinical, and genetic predictors for glycemic progression in Chinese patients with type 2 diabetes: A cohort study using the Hong Kong Diabetes Register and Hong Kong Diabetes Biobank. PLoS Med 17(7): e1003209. doi:10.1371/journal.pmed.1003209
Kategorie: Research Article
doi: 10.1371/journal.pmed.1003209



Type 2 diabetes (T2D) is a progressive disease whereby there is often deterioration in glucose control despite escalation in treatment. There is significant heterogeneity to this progression of glycemia after onset of diabetes, yet the factors that influence glycemic progression are not well understood. Given the tremendous burden of diabetes in the Chinese population, and limited knowledge on factors that influence glycemia, we aim to identify the clinical and genetic predictors for glycemic progression in Chinese patients with T2D.

Methods and findings

In 1995–2007, 7,091 insulin-naïve Chinese patients (mean age 56.8 ± 13.3 [SD] years; mean age of T2D onset 51.1 ± 12.7 years; 47% men; 28.4% current or ex-smokers; median duration of diabetes 4 [IQR: 1–9] years; mean HbA1c 7.4% ± 1.7%; mean body mass index [BMI] 25.3 ± 4.0 kg/m2) were followed prospectively in the Hong Kong Diabetes Register. We examined associations of BMI and other clinical and genetic factors with glycemic progression defined as requirement of continuous insulin treatment, or 2 consecutive HbA1c ≥8.5% while on ≥2 oral glucose-lowering drugs (OGLDs), with validation in another multicenter cohort of Hong Kong Diabetes Biobank. During a median follow-up period of 8.8 (IQR: 4.8–13.3) years, incidence of glycemic progression was 48.0 (95% confidence interval [CI] 46.3–49.8) per 1,000 person-years with 2,519 patients started on insulin. Among the latter, 33.2% had a lag period of 1.3 years before insulin was initiated. Risk of progression was associated with extremes of BMI and high HbA1c. On multivariate Cox analysis, early age at diagnosis, microvascular complications, high triglyceride levels, and tobacco use were additional independent predictors for glycemic progression. A polygenic risk score (PRS) including 123 known risk variants for T2D also predicted rapid progression to insulin therapy (hazard ratio [HR]: 1.07 [95% CI 1.03–1.12] per SD; P = 0.001), with validation in the replication cohort (HR: 1.24 [95% CI 1.06–1.46] per SD; P = 0.008). A PRS using 63 BMI-related variants predicted BMI (beta [SE] = 0.312 [0.057] per SD; P = 5.84 × 10−8) but not glycemic progression (HR: 1.01 [95% CI 0.96–1.05] per SD; P = 0.747). Limitations of this study include potential misdiagnosis of T2D and lack of detailed data of drug use during follow-up in the replication cohort.


Our results show that approximately 5% of patients with T2D failed OGLDs annually in this clinic-based cohort. The independent associations of modifiable and genetic risk factors allow more precise identification of high-risk patients for early intensive control of multiple risk factors to prevent glycemic progression.

Klíčová slova:

Body Mass Index – diabetes mellitus – HbA1c – Human genetics – Insulin – Medical risk factors – Single nucleotide polymorphisms – Type 2 diabetes


1. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther. 2008;88(11):1322–35. doi: 10.2522/ptj.20080008 18801863; PubMed Central PMCID: PMC2579903.

2. Zhou K, Donnelly LA, Morris AD, Franks PW, Jennison C, Palmer CN, et al. Clinical and genetic determinants of progression of type 2 diabetes: a DIRECT study. Diabetes Care. 2014;37(3):718–24. doi: 10.2337/dc13-1995 24186880; PubMed Central PMCID: PMC4038744.

3. Pani LN, Nathan DM, Grant RW. Clinical predictors of disease progression and medication initiation in untreated patients with type 2 diabetes and A1C less than 7%. Diabetes Care. 2008;31(3):386–90. doi: 10.2337/dc07-1934 18083790; PubMed Central PMCID: PMC3829640.

4. Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nature communications. 2018;9(1):2941. doi: 10.1038/s41467-018-04951-w 30054458; PubMed Central PMCID: PMC6063971.

5. Corbin LJ, Richmond RC, Wade KH, Burgess S, Bowden J, Smith GD, et al. BMI as a Modifiable Risk Factor for Type 2 Diabetes: Refining and Understanding Causal Estimates Using Mendelian Randomization. Diabetes. 2016;65(10):3002–7. doi: 10.2337/db16-0418 WOS:000388372900020. 27402723

6. Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo K, et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet. 2007;52(2):117–22. doi: 10.1007/s10038-006-0087-0 17111267.

7. Hou W, Zhang D, Lu W, Zheng T, Wan L, Li Q, et al. Polymorphism of organic cation transporter 2 improves glucose-lowering effect of metformin via influencing its pharmacokinetics in Chinese type 2 diabetic patients. Molecular diagnosis & therapy. 2015;19(1):25–33. doi: 10.1007/s40291-014-0126-z 25573751.

8. Jablonski KA, McAteer JB, de Bakker PI, Franks PW, Pollin TI, Hanson RL, et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 2010;59(10):2672–81. doi: 10.2337/db10-0543 20682687; PubMed Central PMCID: PMC3279522.

9. Phani NM, Vohra M, Kakar A, Adhikari P, Nagri SK, D'Souza SC, et al. Implication of critical pharmacokinetic gene variants on therapeutic response to metformin in Type 2 diabetes. Pharmacogenomics. 2018;19(11):905–11. doi: 10.2217/pgs-2018-0041 WOS:000439205900005. 29914345

10. van Leeuwen N, Nijpels G, Becker ML, Deshmukh H, Zhou K, Stricker BHC, et al. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia. 2012;55(7):1971–7. doi: 10.1007/s00125-012-2537-x WOS:000305215200015. 22453232

11. Zhou K, Yee SW, Seiser EL, van Leeuwen N, Tavendale R, Bennett AJ, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016. doi: 10.1038/ng.3632 27500523.

12. Rotroff DM, Yee SW, Zhou K, Marvel SW, Shah HS, Jack JR, et al. Genetic Variants in CPA6 and PRPF31 Are Associated With Variation in Response to Metformin in Individuals With Type 2 Diabetes. Diabetes. 2018;67(7):1428–40. doi: 10.2337/db17-1164 29650774; PubMed Central PMCID: PMC6014560.

13. Tkac I, Javorsky M, Klimcakova L, Zidzik J, Gal'a I, Babjakova E, et al. A pharmacogenetic association between a variation in calpain 10 (CAPN10) gene and the response to metformin treatment in patients with type 2 diabetes. Eur J Clin Pharmacol. 2015;71(1):59–63. doi: 10.1007/s00228-014-1774-y WOS:000347156900007. 25327507

14. Zhou K, Donnelly L, Burch L, Tavendale R, Doney AS, Leese G, et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a Go-DARTS study. Clinical pharmacology and therapeutics. 2010;87(1):52–6. doi: 10.1038/clpt.2009.176 19794412.

15. Xu H, Murray M, McLachlan AJ. Influence of genetic polymorphisms on the pharmacokinetics and pharmaco-dynamics of sulfonylurea drugs. Current drug metabolism. 2009;10(6):643–58. doi: 10.2174/138920009789375388 19799532.

16. Shao H, Ren XM, Liu NF, Chen GM, Li WL, Zhai ZH, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics and pharmacodynamics of gliclazide in healthy Chinese Han volunteers. Journal of clinical pharmacy and therapeutics. 2010;35(3):351–60. doi: 10.1111/j.1365-2710.2009.01134.x WOS:000277413000011. 20831536

17. Javorsky M, Klimcakova L, Schroner Z, Zidzik J, Babjakova E, Fabianova M, et al. KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur J Intern Med. 2012;23(3):245–9. doi: 10.1016/j.ejim.2011.10.018 WOS:000301125900016. 22385882

18. Prudente S, Morini E, Lucchesi D, Lamacchia O, Bailetti D, Mercuri L, et al. IRS1 G972R Missense Polymorphism Is Associated With Failure to Oral Antidiabetes Drugs in White Patients With Type 2 Diabetes From Italy. Diabetes. 2014;63(9):3135–40. doi: 10.2337/db13-1966 WOS:000341505300031. 24947357

19. Dawed AY, Donnelly L, Tavendale R, Carr F, Leese G, Palmer CNA, et al. CYP2C8 and SLCO1B1 Variants and Therapeutic Response to Thiazolidinediones in Patients With Type 2 Diabetes. Diabetes Care. 2016;39(11):1902–8. doi: 10.2337/dc15-2464 WOS:000386328800019. 27271184

20. Kang ES, Park SY, Kim HJ, Kim CS, Ahn CW, Cha BS, et al. Effects of Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma2 gene on rosiglitazone response in type 2 diabetes. Clinical pharmacology and therapeutics. 2005;78(2):202–8. doi: 10.1016/j.clpt.2005.04.013 16084854.

21. Yang H, Ye EL, Si GX, Chen LM, Cai LQ, Ye CF, et al. Adiponectin Gene Polymorphism rs2241766 T/G Is Associated with Response to Pioglitazone Treatment in Type 2 Diabetic Patients from Southern China. PLoS ONE. 2014;9(11). ARTN e112480 10.1371/journal.pone.0112480. WOS:000347121300033.

22. Ma RC, Tam CH, Wang Y, Luk AO, Hu C, Yang X, et al. Genetic variants of the protein kinase C-beta 1 gene and development of end-stage renal disease in patients with type 2 diabetes. JAMA: the journal of the American Medical Association. 2010;304(8):881–9. Epub 2010/08/26. 304/8/881 [pii] doi: 10.1001/jama.2010.1191 20736472.

23. Jiang G, Luk AOY, Tam CHT, Xie F, Carstensen B, Lau ESH, et al. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with Type 2 diabetes. Kidney Int. 2019;95(1):178–87. doi: 10.1016/j.kint.2018.08.026 30415941.

24. Yang XL, So WY, Kong AP, Clarke P, Ho CS, Lam CW, et al. End-stage renal disease risk equations for Hong Kong Chinese patients with type 2 diabetes: Hong Kong Diabetes Registry. Diabetologia. 2006;49(10):2299–308. Epub 2006/09/01. doi: 10.1007/s00125-006-0376-3 16944095.

25. Piwernetz K, Home PD, Snorgaard O, Antsiferov M, Staehr-Johansen K, Krans M. Monitoring the targets of the St Vincent Declaration and the implementation of quality management in diabetes care: the DIABCARE initiative. The DIABCARE Monitoring Group of the St Vincent Declaration Steering Committee. Diabet Med. 1993;10(4):371–7. Epub 1993/05/01. doi: 10.1111/j.1464-5491.1993.tb00083.x 8508624.

26. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. Epub 1972/06/01. 4337382.

27. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. doi: 10.7326/0003-4819-150-9-200905050-00006 19414839; PubMed Central PMCID: PMC2763564.

28. Ma RC, Lin X, Jia W. Causes of type 2 diabetes in China. The Lancet Diabetes & endocrinology. 2014;2(12):980–91. doi: 10.1016/S2213-8587(14)70145-7 25218727.

29. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. doi: 10.1038/nature14177 25673413; PubMed Central PMCID: PMC4382211.

30. Munthali RJ, Sahibdeen V, Kagura J, Hendry LM, Norris SA, Ong KK, et al. Genetic risk score for adult body mass index associations with childhood and adolescent weight gain in an African population. Genes & nutrition. 2018;13:24. doi: 10.1186/s12263-018-0613-7 30123368; PubMed Central PMCID: PMC6090951.

31. Grambsch PM, Therneau TM. Proportional Hazards Tests and Diagnostics Based on Weighted Residuals. Biometrika. 1994;81(3):515–26. WOS:A1994PP36700006.

32. World Health Organization. The Asian-Pacific perspective: redefining obesity and its treatment, WHO Western Pacific Region, Geneva, Switzerland. 2000.

33. Hosomura N, Malmasi S, Timerman D, Lei VJ, Zhang H, Chang L, et al. Decline of insulin therapy and delays in insulin initiation in people with uncontrolled diabetes mellitus. Diabetic Med. 2017;34(11):1599–602. doi: 10.1111/dme.13454 WOS:000413165100014. 28905434

34. Goodall G, Sarpong EM, Hayes C, Valentine WJ. The consequences of delaying insulin initiation in UK type 2 diabetes patients failing oral hyperglycaemic agents: a modelling study. Bmc Endocr Disord. 2009;9. Artn 19 10.1186/1472-6823-9-19. WOS:000208119200019.

35. Kim SG, Kim NH, Ku BJ, Shon HS, Kim DM, Park TS, et al. Delay of insulin initiation in patients with type 2 diabetes mellitus inadequately controlled with oral hypoglycemic agents (analysis of patient- and physician-related factors): A prospective observational DIPP-FACTOR study in Korea. J Diabetes Invest. 2017;8(3):346–53. doi: 10.1111/jdi.12581 WOS:000400971000012. 27712034

36. Abu Hassan H, Tohid H, Amin RM, Bidin MBL, Muthupalaniappen L, Omar K. Factors influencing insulin acceptance among type 2 diabetes mellitus patients in a primary care clinic: a qualitative exploration. Bmc Fam Pract. 2013;14. Artn 164 10.1186/1471-2296-14-164. WOS:000327452300001.

37. Lim LL, Lau ESH, Kong APS, Davies MJ, Levitt NS, Eliasson B, et al. Aspects of Multicomponent Integrated Care Promote Sustained Improvement in Surrogate Clinical Outcomes: A Systematic Review and Meta-analysis. Diabetes Care. 2018;41(6):1312–20. doi: 10.2337/dc17-2010 29784698; PubMed Central PMCID: PMC5961399.

38. Cho YM, Kim TH, Lim S, Choi SH, Shin HD, Lee HK, et al. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia. 2009;52(2):253–61. doi: 10.1007/s00125-008-1196-4 WOS:000262411200011. 19002430

39. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nature Genetics. 2018;50(9):1219–24. doi: 10.1038/s41588-018-0183-z WOS:000443151300011. 30104762

40. Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. The lancet Diabetes & endocrinology. 2018;6(5):361–9. Epub 2018/03/06. doi: 10.1016/S2213-8587(18)30051-2 29503172.

41. Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics. 2018;50(4):559–71. doi: 10.1038/s41588-018-0084-1 WOS:000429529300016. 29632382

42. Udler MS, Kim J, von Grotthuss M, Bonas-Guarch S, Cole JB, Chiou J, et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med. 2018;15(9). ARTN e1002654 10.1371/journal.pmed.1002654. WOS:000445914900007.

43. Luk AO, Lau ES, Lim C, Kong AP, Chow E, Ma RC, et al. Diabetes-related complications and mortality in patients with young-onset latent autoimmune diabetes: A 14-year analysis of the prospective Hong Kong Diabetes Register. Diabetes Care. 2019 Jun; 42(6): 1042–1050. doi: 10.2337/dc18-1796 30967437

44. Turner R, Stratton I, Horton V, Manley S, Zimmet P, Mackay IR, et al. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. Lancet. 1997;350(9087):1288–93. doi: 10.1016/s0140-6736(97)03062-6 WOS:A1997YD68900011. 9357409

Článek vyšel v časopise

PLOS Medicine

2020 Číslo 7

Nejčtenější v tomto čísle
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se