#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Kombinace extraktu z grapefruitových semínek a koncentrované šťávy z klikvy velkoplodé jako potenciální protimikrobní konservans ke zvýšení mikrobiologické stability hypromelosového gelu


Autoři: Jurga Bernatoniene;  Rasa Keraitė;  Ruta Masteiková;  Alvydas Pavilonis;  Arūnas Savickas
Působiště autorů: Department of Drug Technology and Social Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania ;  Pharmacy of Lithuanian University of Health Sciences, Kaunas, Lithuania *
Vyšlo v časopise: Čes. slov. Farm., 2013; 62, 212-219
Kategorie: Původní práce

Souhrn

Vodné gely z hypromelosy nejsou mikrobiologicky stálé – během uchovávání se v nich mohou pomnožit mikroorganismy. Ke zvýšení doby použitelnosti gelů je nutná přísada protimikrobních konzervačních látek. Některé látky rostlinného původu jsou charakteristické svými antimikrobiálními vlastnostmi, a tak by mohly sloužit jako alternativa k syntetickým konzervantům. Proto cílem této práce bylo sledování mikrobiologické stability hypromelosového gelu a účinnosti přírodních látek – extraktu z grapefruitových semínek (GSE), koncentrované šťávy z klikvy velkoplodé a jejich kombinace – na antimikrobiální ochranu gelu. Hodnocení antimikrobiální aktivity GSE a klikvové šťávy ukázalo, že se míra jejich působení liší. Jak klikvová šťáva, tak GSE potlačovaly růst standardních gram-pozitivních a gram-negativních bakterií, avšak účinek GSE byl silnější. Candida albicans byla citlivá pouze k GSE. Z tohoto důvodu s cílem zasáhnout všechny zkoumané mikroorganismy, lze použít buď kombinaci 0,7 % GSE a 10 % klikvové šťávy nebo samotný GSE v 5% koncentraci. Kombinace GSE a klikvové šťávy byla účinná pouze v kyselém prostředí (pH 2,5–5), kdežto antimikrobiální efekt GSE nebyl závislý na hodnotě pH.

Klíčová slova:
extrakt z grapefruitových semínek • klikvová šťáva • hypromelosový gel • antimikrobiální ochrana


Zdroje

1. Rawe R. C., Sheskey P. J., Owen S. C. (eds.) Handbook of Pharmaceutical Excipients. 5th ed. London: Pharmaceutical Press 2006; 948 p.

2. Murray J. C. F. Cellulosics. In: Phillips G.O., Williams P. A. eds. Handbook of Hydrocolloids. Boca Raton: CRC Press 2000.

3. Helin-Tanninen M., Naaranlahti T., Kontra K., Wallenius K. Enteral suspension of nifedipine for neonates. Part 1. Formulation of nifedipine suspension for hospital use. Clin. Pharmacol. Ther. 2001; 26, 49–57. 

4. Ji A. J., Ingham E., Wang J. Y. Effect of EDTA and methionine on preventing loss of viscosity of cellulose-based topical gel. AAPS PharmSciTech. 2009; 10, 678–683.

5. Koroloff N., Boots R., Lipman J. Thomas P., Rickard C., Coyer F. J. A randomised controlled study of the efficacy of hypromellose and Lacri-Lube combination versus polyethylene/Cling wrap to prevent corneal epithelial breakdown in the semiconscious intensive care patient. Int. Care Med. 2004; 30, 1122–1126.

6. Boukarim C., Jaoudé S. A., Bahnam R., Barada R., Kyriacos S. Preservatives in liquid pharmaceutical preparations. J. Appl. Res. 2009; 9, 14–17.

7. Gilbert P., Allison D. G. Preservation of pharmaceutical products. In: Swarbrick J., Boylan J. C. eds. Encyclopedia of Pharmaceutical Technology, 2nd ed. New York: Marcel Dekker 2002.

8. Ostrosky E. A., Marcondes E.M. C., Nishikawa S. O., Lopes P. S., Varca G. H. C., Pinto T. J. A., Consiglieri T. V. O., Baby A. R., Velasco M. V. R., Kaneko T. M. Rubus rosaefolius extract as a natural preservative candidate in topical formulations. AAPS PharmSciTech. 2011; 12, 732–737.

9. Davidson P. M., Harrison M. A. Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol. 2002; 56, 69–78.

10. Serra A. T., Matias A. A., Nunes A. V. M., Leitão M. C., Brito D., Bronze R., Silva S., Pires A., Crespo M. T., San Romão M. V., Duarte C. M. In vitro evaluation of olive- and grape-based extracts as potential preservatives for food. Innovative Food Sci. Emerg. Technol. 2008; 9, 311–319.

11. Soković M., Glamočlija J., Marin P. D., Brkić D., van Griensven L. J. L. D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010; 15, 7532–7546.

12. Lemay M. J., Choquette J., Delaquis P. J., Gariépy C., Rodrigue N., Saucier L. Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. Int. J. Food Microbiol. 2002; 78, 217–226.

13. Von Woedtke T., Schlüter B., Pflegel P., Lindequist U., Jülich W.D. Aspects of the antimicrobial efficacy of grapefruit seed extract and its relation to preservative substances contained. Pharmazie 1999; 54, 452–456.

14. Cvetnić Z., Vladimir-Knežević S. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm. 2004; 54, 243–250.

15. Heggers J. P., Cottingham J., Gusman J., Reagor L., McCoy L., Carino E., Cox R., Zhao J. G. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity. J. Altern. Complement. Med. 2002; 8, 333–340.

16. Bevilacqua A., Ficelo S., Corbo M. R., Sinigaglia M. J. Bioactivity of grapefruit seed extract against Pseudomonas spp. Food Process Preserv. 2010; 34, 495–507.

17. Edwards-Jones V., Buck R., Shawcross S. G., Dawson M. M., Dunn K. The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns 2004; 30, 772–777.

18. Xu W., Qu W., Huang K., Guo F., Yang J., Zhao H., Luo Y. Antibacterial effect of grapefruit seed extract on food-borne pathogens and its application in the preservation of minimally processed vegetables. Postharvest Biol. Technol. 2007; 45, 126–133.

19. Faleye F. J., Ogundaini A. O., Olugbade A. T. Antibacterial and antioxidant activities of Citrus paradisi (grapefruit seed) extracts. JPSI 2012; 1, 63–66.

20. Reagor L., Gusman J., McCoy L., Carino E., Heggers J. P. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. An in vitro agar assay. J. Altern. Complement. Med. 2002; 8, 325–332.

21. Tirillini B. Grapefruit: the last decade acquisitions. Fitoterapia 2000; 71, S29–S37.

22. Yu J., Dandekar D. V., Toledo R. T., Singh R. K., Patil B. S. Supercritical fluid extraction of limonoids and naringin from grapefruit (Citrus paradisi Macf.) seeds. Food Chem. 2007; 105, 1026–1031.

23. Oyelami O. A., Agbakwuru E. A., Adeyemi L. A., Adedeji G. B. The effectiveness of grapefruit (Citrus paradisi) seeds in treating urinary tract infections. J. Altern. Complement. Med. 2005; 11, 369–371.

24. Zayachkivska O. S., Konturek S. J., Drozdowicz D., Konturek P. C., Brzozowski T., Ghegotsky M. R. Gastroprotective effects of flavonoids in plant extracts. J. Physiol. Pharmacol. 2005; 56, 219–231.

25. Dembinski A., Warzecha Z., Konturek S. J., Ceranowicz P., Dembinski M., Pawlik W. W., Kusnierz-Cabala B., Naskalski J. W. Extract of grapefruit-seed reduces acute pancreatitis induces by ischemia/reperfusion in rats; possible implication of tissue antioxidants. J. Physiol. Pharmacol. 2004; 55, 811–821.

26. Adeneye A.A. Haematopoetic effect of methanol seed extract of Citrus paradisi Macfad (grape fruit) in Wistar rats. Biomed. Res. 2008; 19, 23–26.

27. Côté J., Caillet S., Doyon G., Dussault D., Sylvain J. F., Lacroix M. Antimicrobial effect of cranberry juice and extracts. Food Control 2004; 22, 1413–1418.

28. Caillet S., Côté J., Sylvain J. F., Lacroix M. Antimicrobial effects of fractions from cranberry products on the growth of seven pathogenic bacteria. Food Control 2012; 23, 419–428.

29. Rahbar M., Diba K. In vitro activity of cranberry extract against etiological agents of urinary tract infections. Afr. J. Pharm. Pharmacol. 2010; 4, 286–288.

30. Raz R., Chazan B., Dan M. Cranberry juice and urinary tract infection. Clin. Infect. Dis. 2004; 38, 1413–1419.

31. Cimolai N., Cimolai T. The cranberry and the urinary tract. Eur. J. Clin. Microbiol. Infect. Dis. 2007; 26, 767–776.

32. Howell A. B., Botto H., Combescure C., Blanc-Potard A.-B., Gausa L., Matsumoto T., Tenke P., Sotto A., Lavigne J. P. Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: a multicentric randomized double blind study. BMC Infect. Dis. 2010; 10, 94. http://www.biomedcentral.com/1471-2334/10/94.

33. Pinzón-Arango P. A., Holguin K., Camesano T. A. Impact of cranberry juice and proanthocyanidins on the ability of Escherichia coli to form biofilms. Food Sci. Biotechnol. 2011; 20, 1315–1321.

34. Bodet C., Grenier D., Chandad F., Ofek I., Steinberg D., Weiss E. I. Potential oral health benefits of cranberry. Crit. Rev. Food Sci. Nutr. 2008; 48, 672–680.

35. Margariños H. L. E., Sahr C., Selaive S. D. C., Costa M. E., Figuerola F. E., Pizarro O. A. In vitro inhibitory effect of cranberry (Vaccinium macrocarpum Ait.) juice on pathogenic microorganisms. Appl. Biochem. Microbiol. 2008; 44, 300–304.

36. Wu V. C. H., Qui X., Bushway A., Harper L. Antibacterial effect of American cranberries (Vaccinium macrocarpon) on foodborne pathogens. LWT-Food Sci. Technol. 2008; 41, 1834–1841.

37. Lacombe A., Wu V. C. H., Tyler S., Edwards K. Antimicrobial action of the American cranberry constituents: phenolics, anthocyanins and organic acids against Escherichia coli O157:H7. Int. J. Food Microbiol. 2010; 139, 102–107.

38. Patel K. D., Scarano F. J., Kondo M., Hurta R. A., Neto C. C. Proanthocyanidin-rich extracts from cranberry fruit (Vaccinium macrocarpon Ait.) selectively inhibit the growth of human pathogenic fungi Candida spp. and Cryptococcus neoformans. J. Agric. Food Chem. 2011; 59, 12864–12873.

39. Feldman M., Tanabe S., Howell A., Grenier D. Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells. BMC Complement. Altern. Med. 2012; 12, 6.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273432/pdf/1472-6882-12-6.pdf.

40. Viskelis P., Rubinskienė M., Jasutienė I., Šarkinas A., Daubaras R., Česonienė L. Anthocyanins, antioxidative and antimicrobial properties of american cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci. 2009; 74, C157–C161.

41. Wen A., Pasacal D., Stanich K., Toivonen P. Antilisterial activity of selected phenolic acids. Food Microbiol. 2003; 20, 305–311.

Štítky
Farmacie Farmakologie

Článek vyšel v časopise

Česká a slovenská farmacie

Číslo 5

2013 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Halitóza
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#