INX-18 and INX-19 play distinct roles in electrical synapses that modulate aversive behavior in Caenorhabditis elegans

Autoři: Lisa Voelker aff001;  Bishal Upadhyaya aff001;  Denise M. Ferkey aff003;  Sarah Woldemariam aff004;  Noelle D. L’Etoile aff004;  Ithai Rabinowitch aff001;  Jihong Bai aff001
Působiště autorů: Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America aff001;  Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America aff002;  Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States of America aff003;  Department of Cell and Tissue Biology, University of California, San Francisco, CA, United States of America aff004;  Department of Medical Neurobiology, Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem, Israel aff005
Vyšlo v časopise: INX-18 and INX-19 play distinct roles in electrical synapses that modulate aversive behavior in Caenorhabditis elegans. PLoS Genet 15(10): e32767. doi:10.1371/journal.pgen.1008341
Kategorie: Research Article


In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize to different regions of the nerve ring, indicating that they are not present in the same synapses. Second, removing inx-18 disrupts the distribution of INX-19, while removing inx-19 does not alter INX-18 localization. Finally, by using a fluorescent cGMP reporter, we find that INX-18 and INX-19 have distinct roles in establishing cGMP levels in ASK and ASH. Together, these results demonstrate that electrical synapses containing INX-18 and INX-19 facilitate modulation of ASH nociceptive signaling. Our findings support the idea that a network of electrical synapses mediates cGMP exchange between neurons, enabling modulation of sensory responses and behavior.

Klíčová slova:

Animal behavior – Axons – Caenorhabditis elegans – Neurons – Quinine – Synapses – Electrical synapses – cGMP signaling


1. Marder E. Neuromodulation of Neuronal Circuits: Back to the Future. Neuron 2012; 76: 1–11. doi: 10.1016/j.neuron.2012.09.010 23040802

2. Lopez HS, Brown AM. Neuromodulation. Curr Opin Neurobiol 1992; 2: 317–322. doi: 10.1016/0959-4388(92)90122-2 1643413

3. Birmingham JT, Tauck DL. Neuromodulation in invertebrate sensory systems: from biophysics to behavior. J Exp Biol 2003; 206: 3541–3546. doi: 10.1242/jeb.00601 12966045

4. Zucker RS, Regehr WG. Short-Term Synaptic Plasticity. Annu Rev Physiol 2002; 64: 355–405. doi: 10.1146/annurev.physiol.64.092501.114547 11826273

5. Citri A, Malenka RC. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 2008; 33: 18–41. doi: 10.1038/sj.npp.1301559 17728696

6. Phelan P. Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta BBA—Biomembr 2005; 1711: 225–245.

7. Connors BW, Long MA. Electrical Synapses in the Mammalian Brain. Annu Rev Neurosci 2004; 27: 393–418. doi: 10.1146/annurev.neuro.26.041002.131128 15217338

8. Altun ZF, Chen B, Wang Z-W, et al. High resolution map of Caenorhabditis elegans gap junction proteins. Dev Dyn 2009; 238: 1936–1950. doi: 10.1002/dvdy.22025 19621339

9. Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res 2004; 62: 228–232. doi: 10.1016/j.cardiores.2003.11.013 15094343

10. Hervé J-C, Phelan P, Bruzzone R, et al. Connexins, innexins and pannexins: Bridging the communication gap. Biochim Biophys Acta BBA—Biomembr 2005; 1719: 3–5.

11. Bennett MVL, Aljure E, Nakajima Y, et al. Electrotonic Junctions between Teleost Spinal Neurons: Electrophysiology and Ultrastructure. Science 1963; 141: 262–264. doi: 10.1126/science.141.3577.262 13967485

12. Beblo DA, Veenstra RD. Monovalent Cation Permeation through the Connexin40 Gap Junction Channel. J Gen Physiol 1997; 109: 509–522. doi: 10.1085/jgp.109.4.509 9101408

13. Barr L, Dewey MM, Berger W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol 1965; 48: 797–823. doi: 10.1085/jgp.48.5.797 14324989

14. Charles AC, Naus CC, Zhu D, et al. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol 1992; 118: 195–201. doi: 10.1083/jcb.118.1.195 1320034

15. Sáez JC, Connor JA, Spray DC, et al. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci 1989; 86: 2708–2712. doi: 10.1073/pnas.86.8.2708 2784857

16. Murray SA, Fletcher WH. Hormone-induced intercellular signal transfer dissociates cyclic AMP-dependent protein kinase. J Cell Biol 1984; 98: 1710–1719. doi: 10.1083/jcb.98.5.1710 6327720

17. Bevans CG, Kordel M, Rhee SK, et al. Isoform Composition of Connexin Channels Determines Selectivity among Second Messengers and Uncharged Molecules. J Biol Chem 1998; 273: 2808–2816. doi: 10.1074/jbc.273.5.2808 9446589

18. Lawrence TS, Beers WH, Gilula NB. Transmission of hormonal stimulation by cell-to-cell communication. Nature 1978; 272: 501. doi: 10.1038/272501a0 211417

19. Tsien RW, Weingart R. Proceedings: Cyclic AMP: cell-to-cell movement and inotropic effect in ventricular muscle, studied by a cut-end method. J Physiol 1974; 242: 95P–96P. 4376174

20. Shuhaibar LC, Egbert JR, Norris RP, et al. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proc Natl Acad Sci U S A 2015; 112: 5527–5532. doi: 10.1073/pnas.1423598112 25775542

21. Niessen H, Harz H, Bedner P, et al. Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J Cell Sci 2000; 113: 1365–1372. 10725220

22. Valiunas V, Polosina Y, Miller H, et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 2005; 568: 459–468. doi: 10.1113/jphysiol.2005.090985 16037090

23. Hong X, Sin WC, Harris AL, et al. Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 2015; 6: 15566–15577. doi: 10.18632/oncotarget.3904 25978028

24. Skerrett IM, Williams JB. A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev Neurobiol 2017; 77: 522–547. doi: 10.1002/dneu.22447 27582044

25. Krzyzanowski MC, Woldemariam S, Wood JF, et al. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network. PLOS Genet 2016; 12: e1006153. doi: 10.1371/journal.pgen.1006153 27459302

26. Krzyzanowski MC, Brueggemann C, Ezak MJ, et al. The C. elegans cGMP-Dependent Protein Kinase EGL-4 Regulates Nociceptive Behavioral Sensitivity. PLoS Genet 2013; 9: e1003619. doi: 10.1371/journal.pgen.1003619 23874221

27. Hilliard MA, Apicella AJ, Kerr R, et al. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 2005; 24: 63–72. doi: 10.1038/sj.emboj.7600493 15577941

28. Kaplan JM, Horvitz HR. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1993; 90: 2227–2231. doi: 10.1073/pnas.90.6.2227 8460126

29. Bargmann CI, Thomas JH, Horvitz HR. Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 1990; 55: 529–538. doi: 10.1101/sqb.1990.055.01.051 2132836

30. Sambongi Y, Nagae T, Liu Y, et al. Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport 1999; 10: 753–757. doi: 10.1097/00001756-199903170-00017 10208543

31. Hilliard MA, Bargmann CI, Bazzicalupo P. C. elegans Responds to Chemical Repellents by Integrating Sensory Inputs from the Head and the Tail. Curr Biol 2002; 12: 730–734. doi: 10.1016/s0960-9822(02)00813-8 12007416

32. Hilliard MA, Bergamasco C, Arbucci S, et al. Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. EMBO J 2004; 23: 1101–1111. doi: 10.1038/sj.emboj.7600107 14988722

33. Bargmann C. Chemosensation in C. elegans. WormBook. Epub ahead of print 2006. doi: 10.1895/wormbook.1.123.1 18050433

34. Piggott BJ, Liu J, Feng Z, et al. The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell 2011; 147: 922–933. doi: 10.1016/j.cell.2011.08.053 22078887

35. White JG, Southgate E, Thomson JN, et al. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986; 314: 1–340. doi: 10.1098/rstb.1986.0056 22462104

36. Ezcurra M, Tanizawa Y, Swoboda P, et al. Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J 2011; 30: 1110–1122. doi: 10.1038/emboj.2011.22 21304491

37. Ardiel EL, Giles AC, Yu AJ, et al. Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a C. elegans polymodal nociceptor. Learn Mem 2016; 23: 495–503. doi: 10.1101/lm.041830.116 27634141

38. Chao MY, Komatsu H, Fukuto HS, et al. Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci 2004; 101: 15512–15517. doi: 10.1073/pnas.0403369101 15492222

39. Ferkey DM, Hyde R, Haspel G, et al. C. elegans G Protein Regulator RGS-3 Controls Sensitivity to Sensory Stimuli. Neuron 2007; 53: 39–52. doi: 10.1016/j.neuron.2006.11.015 17196529

40. Ezak MJ, Ferkey DM. The C. elegans D2-Like Dopamine Receptor DOP-3 Decreases Behavioral Sensitivity to the Olfactory Stimulus 1-Octanol. PLOS ONE 2010; 5: e9487. doi: 10.1371/journal.pone.0009487 20209143

41. Cook SJ, Jarrell TA, Brittin CA, et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019; 571: 63. doi: 10.1038/s41586-019-1352-7 31270481

42. The C. elegans Wiring Project. A database for C. elegans neuronal connectivity data, (accessed 26 February 2019).

43. Chuang C-F, VanHoven MK, Fetter RD, et al. An Innexin-Dependent Cell Network Establishes Left-Right Neuronal Asymmetry in C. elegans. Cell 2007; 129: 787–799. doi: 10.1016/j.cell.2007.02.052 17512411

44. Bhattacharya A, Aghayeva U, Berghoff EG, et al. Plasticity of the Electrical Connectome of C. elegans. Cell 2019; 176: 1174–1189.e16. doi: 10.1016/j.cell.2018.12.024 30686580

45. Fukuto HS, Ferkey DM, Apicella AJ, et al. G Protein-Coupled Receptor Kinase Function Is Essential for Chemosensation in C. elegans. Neuron 2004; 42: 581–593. doi: 10.1016/s0896-6273(04)00252-1 15157420

46. Troemel ER, Chou JH, Dwyer ND, et al. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 1995; 83: 207–218. doi: 10.1016/0092-8674(95)90162-0 7585938

47. Rongo C, Whitfield CW, Rodal A, et al. LIN-10 Is a Shared Component of the Polarized Protein Localization Pathways in Neurons and Epithelia. Cell 1998; 94: 751–759. doi: 10.1016/s0092-8674(00)81734-1 9753322

48. Hart AC, Kass J, Shapiro JE, et al. Distinct Signaling Pathways Mediate Touch and Osmosensory Responses in a Polymodal Sensory Neuron. J Neurosci 1999; 19: 1952–1958. doi: 10.1523/JNEUROSCI.19-06-01952.1999 10066248

49. Oren-Suissa M, Bayer EA, Hobert O. Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature 2016; 533: 206–211. doi: 10.1038/nature17977 27144354

50. Lemcke H, Nittel M-L, Weiss DG, et al. Neuronal differentiation requires a biphasic modulation of gap junctional intercellular communication caused by dynamic changes of connexin43 expression. Eur J Neurosci 2013; 38: 2218–2228. doi: 10.1111/ejn.12219 23607708

51. Sahu A, Ghosh R, Deshpande G, et al. A Gap Junction Protein, Inx2, Modulates Calcium Flux to Specify Border Cell Fate during Drosophila oogenesis. PLoS Genet 2017; 13: e1006542. doi: 10.1371/journal.pgen.1006542 28114410

52. Wakabayashi T, Kimura Y, Ohba Y, et al. In vivo calcium imaging of OFF-responding ASK chemosensory neurons in C. elegans. Biochim Biophys Acta BBA—Gen Subj 2009; 1790: 765–769.

53. Ward A, Liu J, Feng Z, et al. Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 2008; 11: 916–922. doi: 10.1038/nn.2155 18604203

54. Ortiz CO, Etchberger JF, Posy SL, et al. Searching for Neuronal Left/Right Asymmetry: Genomewide Analysis of Nematode Receptor-Type Guanylyl Cyclases. Genetics 2006; 173: 131–149. doi: 10.1534/genetics.106.055749 16547101

55. Woldemariam S, Nagpal J, Hill T, et al. Using a Robust and Sensitive GFP-Based cGMP Sensor for Real-Time Imaging in Intact Caenorhabditis elegans. Genetics 2019; 213: 59–77. doi: 10.1534/genetics.119.302392 31331946

56. Bhargava Y, Hampden-Smith K, Chachlaki K, et al. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging. Front Mol Neurosci 2013; 6: 26. doi: 10.3389/fnmol.2013.00026 24068983

57. Phelan P, Goulding LA, Tam JLY, et al. Molecular Mechanism of Rectification at Identified Electrical Synapses in the Drosophila Giant Fiber System. Curr Biol 2008; 18: 1955–1960. doi: 10.1016/j.cub.2008.10.067 19084406

58. Liu P, Chen B, Mailler R, et al. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nat Commun 2017; 8: 14818. doi: 10.1038/ncomms14818 28317880

59. Palacios-Prado N, Huetteroth W, Pereda AE. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification. Front Cell Neurosci; 8. Epub ahead of print 2014. doi: 10.3389/fncel.2014.00324 25360082

60. Marks WD, Skerrett IM. Role of amino terminus in voltage gating and junctional rectification of Shaking B innexins. J Neurophysiol 2013; 111: 1383–1395. doi: 10.1152/jn.00385.2013 24381032

61. Rash JE, Curti S, Vanderpool KG, et al. Molecular and Functional Asymmetry at a Vertebrate Electrical Synapse. Neuron 2013; 79: 957–969. doi: 10.1016/j.neuron.2013.06.037 24012008

62. Veenstra RD. Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 1996; 28: 327–337. doi: 10.1007/bf02110109 8844330

63. Curti S, O’Brien J. Characteristics and plasticity of electrical synaptic transmission. BMC Cell Biol; 17. Epub ahead of print 24 May 2016. doi: 10.1186/s12860-016-0091-y 27230893

64. Shimizu K, Stopfer M. Gap junctions. Curr Biol 2013; 23: R1026–R1031. doi: 10.1016/j.cub.2013.10.067 24309273

65. Müller DJ, Hand GM, Engel A, et al. Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J 2002; 21: 3598–3607. doi: 10.1093/emboj/cdf365 12110573

66. Noma A, Tsuboi N. Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig. J Physiol 1987; 382: 193–211. doi: 10.1113/jphysiol.1987.sp016363 2442361

67. Musil LS, Le A-CN, VanSlyke JK, et al. Regulation of Connexin Degradation as a Mechanism to Increase Gap Junction Assembly and Function. J Biol Chem 2000; 275: 25207–25215. doi: 10.1074/jbc.275.33.25207 10940315

68. Maruyama IN. Receptor Guanylyl Cyclases in Sensory Processing. Front Endocrinol; 7. Epub ahead of print 11 January 2017. doi: 10.3389/fendo.2016.00173 28123378

69. Yu S, Avery L, Baude E, et al. Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors. Proc Natl Acad Sci 1997; 94: 3384–3387. doi: 10.1073/pnas.94.7.3384 9096403

70. Fujiwara M, Sengupta P, McIntire SL. Regulation of Body Size and Behavioral State of C. elegans by Sensory Perception and the EGL-4 cGMP-Dependent Protein Kinase. Neuron 2002; 36: 1091–1102. doi: 10.1016/s0896-6273(02)01093-0 12495624

71. Raizen DM, Cullison KM, Pack AI, et al. A Novel Gain-of-Function Mutant of the Cyclic GMP-Dependent Protein Kinase egl-4 Affects Multiple Physiological Processes in Caenorhabditis elegans. Genetics 2006; 173: 177–187. doi: 10.1534/genetics.106.057380 16547093

72. You Y, Kim J, Raizen DM, et al. Insulin, cGMP, and TGF-β Signals Regulate Food Intake and Quiescence in C. elegans: A Model for Satiety. Cell Metab 2008; 7: 249–257. doi: 10.1016/j.cmet.2008.01.005 18316030

73. Singh K, Chao MY, Somers GA, et al. C. elegans Notch Signaling Regulates Adult Chemosensory Response and Larval Molting Quiescence. Curr Biol 2011; 21: 825–834. doi: 10.1016/j.cub.2011.04.010 21549604

74. Raizen DM, Zimmerman JE, Maycock MH, et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 2008; 451: 569–572. doi: 10.1038/nature06535 18185515

75. Evans T. Transformation and microinjection. WormBook. Epub ahead of print 2006. doi: 10.1895/wormbook.1.108.1

76. Chen T-W, Wardill TJ, Sun Y, et al. Ultra-sensitive fluorescent proteins for imaging neuronal activity. Nature 2013; 499: 295–300. doi: 10.1038/nature12354 23868258

77. Chronis N, Zimmer M, Bargmann CI. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 2007; 4: 727–731. doi: 10.1038/nmeth1075 17704783

78. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676. doi: 10.1038/nmeth.2019 22743772

Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics

2019 Číslo 10

Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se