-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaThe ninth life of the cat reference genome, Felis_catus
Authors: Wengang Zhang aff001; Jeffrey J. Schoenebeck aff001
Authors place of work: The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom aff001
Published in the journal: The ninth life of the cat reference genome, Felis_catus. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1009045
Category: Perspective
doi: https://doi.org/10.1371/journal.pgen.1009045Few animal species are as storied and intertwined with human history as domestic cats, Felis catus. With an estimated 600 million cats living with humans, cats’ popularity as pets is indisputable. The earliest hint of our relationship with felines come from Neolithic skeletal remains found in Cyprus, where a human and wildcat were co-interred some 9,500 years ago [1]. Five thousand years later, the human–cat bond would be proclaimed in ancient Egyptian iconography and burials (Fig 1A), as well as through the mitochondrial DNA of many contemporary cats whose mitotypes were traced back to Northern Africa. The dispersal of cats from Anatolia, the Levante, and Northern Africa coincided with human trade and agriculture [2,3]. Though companionship was probably welcome, it is predation of rodent pests that likely precipitated the union between man and cat [4].
Fig. 1. A summary of Felis_catus_9.0. Buckley and colleagues present new insight into the domestic cat genome and genetic variation in this issue of PLOS Genetics with the release of Felis_catus_9.0, the newest version of the cat reference genome [5]. With its dramatic improvements in both assembly contiguity and annotation, this reference represents a significant step forward for scientists and cat lovers interested in demography, evolution, domestication, and genomic medicine in companion animals.
Contemporary household cats share both our environment and our exposures to infectious diseases. As they grow old, many will succumb to age-related diseases whose names ring familiar: diabetes, lymphoma, kidney disease, cardiomyopathy, and dementia to name a few. For many cats, these morbidities are managed with varying degrees of success through access to state-of-the-art veterinary care. As companion animals, dogs also share many of these same attributes; however, the 2 species’ genetic architectures are distinct: unlike most dogs that can be categorized to various degrees as belonging to a breed, the vast majority of cats are the products of random mating. As a result, the genetic composition of “random breds,” by far the most common type of household cat worldwide, is comparatively diverse and not uncommonly admixed with local subspecies of wildcats [1,6,7]. From this perspective, the genomic architecture of the cat is more akin to our own in terms of diversity and population stratification. For these reasons, cats have the potential to be a comparative model of human medicine and disease etiology.
In 2006, the International Cat Genome Sequencing Consortium (ICGSC) released ASM18133v3, an assembly produced from a female Abyssinian named “Cinnamon.” This draft assembly was produced from Sanger-sequenced plasmid and fosmid libraries. At just 2× read coverage, the assembly was highly fragmented: only 50% of the genome was covered by contigs of lengths greater than 2.7 kb (a statistic also known as contig N50). It required 174,000 contigs to cover half the cat genome [8], and genome assembly and annotation depended heavily on radiation hybrid and comparative mapping to human and dog genomes.
The ICGSC has incrementally improved Cinnamon’s reference genome through releases rebranded as Felis_catus. Felis_catus_5.0 and Felis_catus_6.2 incorporated read data from bacterial artificial chromosome (BAC) end sequencing (2× coverage), 454 Titanium GS_FLX (12× coverage), and enhanced scaffolding, which was underpinned by improved radiation hybrid maps [9,10], together with some variant and methylation data [11]. In 2014, Felis_catus_6.2 was supplanted by Felis_catus_8.0, which added 20× pooled Illumina short-read sequencing from wildcats and pedigree cats to vastly increase variant information. Scaffolding was also improved through yet another high-density radiation hybrid map [12]. However, the Felis_catus assembly remained stubbornly fragmented, more than 80× as much as its fellow carnivore, the dog, whose assembly benefitted from deeper Sanger sequencing (and capital) at the outset.
With the advent of long-read sequencing and optical mapping technologies, the ICGCS were among the first to apply them to mammalian genomes. Their efforts, embodied by Felis_catus_9.0, were released to the wider research community in November 2017. Low-passage fibroblasts grown from Cinnamon provided high molecular weight DNA that was key to maximizing the benefits of Pacific Biosystem’s long-read sequencing technology and Bionano Saphyr’s single-molecule optical mapping technology. This quality of this chromosome level assembly rivaled other popular species including human (Fig 1B), mouse, rat, pig, cattle, and goat.
As described by Buckley and colleagues, Felis_catus_9.0 is remarkably contiguous, with 4,909 contigs and an N50 of 42 Mb and exceptionally long gap-free segments (Fig 1B). The improved assembly facilitated production of gene models, a process whose ab initio predictions were refined by RNA-sequencing, which was used to profile numerous tissues. Improvements in genomic features also include the definition of noncoding genes, pseudogenes, and novel genes that were absent in previous versions of Felis_catus.
Buckley and colleagues also describe approximately 40,000,000 single-nucleotide variants (SNVs) and approximately 13,000,000 indels based on resequencing data from 74 animals. Beyond using annotation tools to predict the functional impact of these variants, the authors binned these variants by functional constraint: significantly fewer loss of function mutations were observed in genes with essential functions. Rather, constrained genes were differentially enriched for presumably benign synonymous variants. This examination, novel in its application to nonhuman species, provides additional granularity to uncovering disease-causing alleles. The authors also generated a comprehensive structure variation (SV) atlas. Over 200,000 SVs (insertions, deletions, inversions, and duplications) were identified, a 300-fold increase from Felis_catus_6.2. One of the SVs was discovered in resequenced Munchkins. It occurs on chromosome B1, within a 5.2 Mb region that was previously associated with this breed’s disproportionate dwarfism [13]. The putatively causal allele removes the final exon of UDP-glucose 6-dehydrogenase (UGDH), a gene whose product is postulated to participate in proteoglycan synthesis within the articular cartilages of long bones (Fig 1C).
The improvements made to the cat reference genome are likely to yield many more biological insights that will impact medicine across many mammalian species. However, Felis_catus_9.0 is but one of many steps that are needed to make genomic veterinary medicine common practice. Significant hurdles remain in the quest to deliver genomic medicine to cats and other companion animals: annotations that depict RNA isoforms are sparse; National Center for Biotechnology Information (NCBI) and ENSEMBL gene models often conflict; noncoding epigenetic features are lacking; Y chromosome assemblies are incomplete [14,15]; and the sequence contents of nucleolar organizer regions, telomeres, and centromeres are undefined. As more conspecific assemblies are produced [16], how will we integrate their information?
Companion animal cell lines and cell-based assays are needed to functionally validate variants suspected of causing disease. Clearly, future research investments and technological innovations are needed to create the repertoire of resources that are required to ensure that clinical DNA samples are interrogated exhaustively and interpreted correctly. Not to be overlooked, the costs of clinical sequencing are currently too high for most owners, especially in the absence of health insurance.
The dream of bringing genomic medicine to veterinary clinics must overcome these and other formidable challenges; scaling these challenges will require research team initiatives, project coordination, sustainable funding, and most importantly, communicating to funders and science policy makers the unmet need that our community can fill. To the latter point, we must unapologetically embrace and communicate that cats (and dogs) are more than pets; they are also unique clinical animal models and sentinels of human health.
Zdroje
1. Vigne JD, Guilaine J, Debue K, Haye L, Gerard P. Early taming of the cat in Cyprus. Science. 2004;304 : 259. doi: 10.1126/science.1095335 15073370
2. Driscoll CA, Menotti-Raymond M, Roca AL, Hupe K, Johnson WE, Geffen E, et al. The Near Eastern origin of cat domestication. Science. 2007;317 : 519–523. doi: 10.1126/science.1139518 17600185
3. Ottoni C, Van Neer W, De Cupere B, Daligault J, Guimaraes S, Peters J, et al. The palaeogenetics of cat dispersal in the ancient world. Nat Ecol Evol. 2017;1 : 103–107. doi: 10.1038/s41559-017-0103 28812674
4. Clutton-Brock J. A natural history of domesticated mammals. 2nd ed. Cambridge; 1999.
5. Buckley RM, Davis BW, Brashear WA, Farias FHG, Kuroki K, Graves T, et al. A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism. PLoS Genet. 2020;16:e1008926. doi: 10.1371/journal.pgen.1008926
6. Alhaddad H, Khan R, Grahn RA, Gandolfi B, Mullikin JC, Cole SA, et al. Extent of linkage disequilibrium in the domestic cat, Felis silvestris catus, and its breeds. Ellegren H, editor. PLoS ONE. 2013;8:e53537. doi: 10.1371/journal.pone.0053537 23308248
7. Lipinski MJ, Froenicke L, Baysac KC, Billings NC, Leutenegger CM, Levy AM, et al. The ascent of cat breeds: genetic evaluations of breeds and worldwide random-bred populations. Genomics. 2008;91 : 12–21. doi: 10.1016/j.ygeno.2007.10.009 18060738
8. Pontius JU, Mullikin JC, Smith DR, Agencourt Sequencing Team, Lindblad-Toh K, Gnerre S, et al. Initial sequence and comparative analysis of the cat genome. Genome Res. 2007;17 : 1675–1689. doi: 10.1101/gr.6380007 17975172
9. Montague MJ, Li G, Gandolfi B, Khan R, Aken BL, Searle SMJ, et al. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc Natl Acad Sci U S A. 2014;111 : 17230–17235. doi: 10.1073/pnas.1410083111 25385592
10. Davis BW, Raudsepp T, Pearks Wilkerson AJ, Agarwala R, Schäffer AA, Houck M, et al. A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic studies across Felidae. Genomics. 2009;93 : 299–304. doi: 10.1016/j.ygeno.2008.09.010 18951970
11. Tamazian G, Simonov S, Dobrynin P, Makunin A, Logachev A, Komissarov A, et al. Annotated features of domestic cat—Felis catus genome. Gigascience. 2014;3 : 13. doi: 10.1186/2047-217X-3-13 25143822
12. Li G, Hillier LW, Grahn RA, Zimin AV, David VA, Menotti-Raymond M, et al. A high-resolution SNP array-based linkage map anchors a new domestic cat draft genome assembly and provides detailed patterns of recombination. G3 (Bethesda). 2016;6 : 1607–1616. doi: 10.1534/g3.116.028746 27172201
13. Lyons LA, Fox DB, Chesney KL, Britt LG, Buckley RM, Coates JR, et al. Localization of a feline autosomal dominant dwarfism locus: a novel model of chondrodysplasia. bioRxiv. 2019;48 : 687210. doi: 10.1101/687210
14. Li G, Davis B, Raudsepp T, Pearks Wilkerson A, Mason V, Ferguson-Smith M, et al. Comparative analysis of mammalian Y chromosomes illuminates ancestral structure and lineage-specific evolution. Genome Res. 2013;23 : 1486–1495. doi: 10.1101/gr.154286.112 23788650
15. Brashear WA, Raudsepp T, Murphy WJ. Evolutionary conservation of Y Chromosome ampliconic gene families despite extensive structural variation. Genome Res. 2018;28 : 1841–1851. doi: 10.1101/gr.237586.118 30381290
16. Isobe S, Matsumoto Y, Chung C, Sakamoto M, Chan T-F, Hirakawa H, et al. AnAms1.0: a high-quality chromosome-scale assembly of a domestic cat Felis catus of American Shorthair breed. bioRxiv. 2020;138 : 2020.05.19.103788. doi: 10.1101/2020.05.19.103788
Článek Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traitsČlánek RNA-directed DNA MethylationČlánek Selection and hybridization shaped the rapid spread of African honey bee ancestry in the AmericasČlánek Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicingČlánek Correction: Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinomaČlánek Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 proteaseČlánek Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantationČlánek Insulin signaling represents a gating mechanism between different memory phases in Drosophila larvae
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 10- Psilocybin je v Česku od 1. ledna 2026 schválený. Co to znamená v praxi?
- Vakcinace stojí díky inovativním technologiím na prahu nové éry
- Návykové látky a prekurzory v magistraliter receptuře
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
-
Všechny články tohoto čísla
- Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots
- A single Ho-induced double-strand break at the MAT locus is lethal in Candida glabrata
- A Rad51-independent pathway promotes single-strand template repair in gene editing
- Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits
- C. elegans CLASP/CLS-2 negatively regulates membrane ingression throughout the oocyte cortex and is required for polar body extrusion
- Dual function of perivascular fibroblasts in vascular stabilization in zebrafish
- The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress
- Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes
- A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO
- How noncrossover homologs are conjoined and segregated in Drosophila male meiosis I: Stable but reversible homolog linkers require a novel Separase target protein
- Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease
- Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion
- Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation
- Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability
- RNA-directed DNA Methylation
- The DNA methylome of human sperm is distinct from blood with little evidence for tissue-consistent obesity associations
- A cautionary note on the use of unsupervised machine learning algorithms to characterise malaria parasite population structure from genetic distance matrices
- Selection and hybridization shaped the rapid spread of African honey bee ancestry in the Americas
- Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells
- Selection for ancient periodic motifs that do not impart DNA bending
- The ninth life of the cat reference genome, Felis_catus
- The Ccr4-Not complex regulates TORC1 signaling and mitochondrial metabolism by promoting vacuole V-ATPase activity
- Mutation of NEKL-4/NEK10 and TTLL genes suppress neuronal ciliary degeneration caused by loss of CCPP-1 deglutamylase function
- Phenotype-genotype comorbidity analysis of patients with rare disorders provides insight into their pathological and molecular bases
- Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms
- Insulin signaling represents a gating mechanism between different memory phases in Drosophila larvae
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Identification of the transcription factor Miz1 as an essential regulator of diphthamide biosynthesis using a CRISPR-mediated genome-wide screen
- Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function
- PE homeostasis rebalanced through mitochondria-ER lipid exchange prevents retinal degeneration in Drosophila
- Chromosome number evolves at equal rates in holocentric and monocentric clades
- Genetically predicted telomere length is associated with clonal somatic copy number alterations in peripheral leukocytes
- Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy
- Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations
- DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines
- Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing
- Automated feature extraction from population wearable device data identified novel loci associated with sleep and circadian rhythms
- Exploring the Complexity of Protein-Level Dosage Compensation that Fine-Tunes Stoichiometry of Multiprotein Complexes
- Diversified regulation of circadian clock gene expression following whole genome duplication
- Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development
- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- Tissue-specific isoforms of the single C. elegans Ryanodine receptor gene unc-68 control specific functions
- A high-throughput CRISPR interference screen for dissecting functional regulators of GPCR/cAMP signaling
- CenH3 distribution reveals extended centromeres in the model beetle Tribolium castaneum
- Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression
- Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum
- Correction: Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development
- Correction: Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis
- Correction: Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma
- Drosophila Caliban preserves intestinal homeostasis and lifespan through regulating mitochondrial dynamics and redox state in enterocytes
- A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank
- Correction: A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage
- Correction: Architecture of the Escherichia coli nucleoid
- Correction: The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes
- Correction: Telomere length-dependent transcription and epigenetic modifications in promoters remote from telomere ends
- Evolution of linkage and genome expansion in protocells: The origin of chromosomes
- Correction: yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
- Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches
- Correction: Leveraging correlations between variants in polygenic risk scores to detect heterogeneity in GWAS cohorts
- Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for “polygenic epistasis”
- DOT-1.1-dependent H3K79 methylation promotes normal meiotic progression and meiotic checkpoint function in C. elegans
- Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change
- AKH-FOXO pathway regulates starvation-induced sleep loss through remodeling of the small ventral lateral neuron dorsal projections
- Function of multiple sclerosis-protective HLA class I alleles revealed by genome-wide protein-quantitative trait loci mapping of interferon signalling
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- RNA-directed DNA Methylation
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání