-
Články
- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for “polygenic epistasis”
Autoři: Christoph D. Rau aff001; Natalia M. Gonzales aff002; Joshua S. Bloom aff003; Danny Park aff004; Julien Ayroles aff005; Abraham A. Palmer aff006; Aldons J. Lusis aff003; Noah Zaitlen aff007
Působiště autorů: Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America aff001; Department of Human Genetics, University of Chicago, Chicago, IL, United States of America aff002; Department of Human Genetics, UCLA, Los Angeles, CA, United States of America aff003; Department of Medicine, UCSF, San Francisco, CA, United States of America aff004; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States of America aff005; Department of Psychiatry, and Institute for Genomic Medicine, UCSD, San Diego, CA, United States of America aff006; Department of Neurology, UCLA, Los Angeles, CA, United States of America aff007
Vyšlo v časopise: Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for “polygenic epistasis”. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1009165
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009165Souhrn
Background
The majority of quantitative genetic models used to map complex traits assume that alleles have similar effects across all individuals. Significant evidence suggests, however, that epistatic interactions modulate the impact of many alleles. Nevertheless, identifying epistatic interactions remains computationally and statistically challenging. In this work, we address some of these challenges by developing a statistical test for polygenic epistasis that determines whether the effect of an allele is altered by the global genetic ancestry proportion from distinct progenitors.
Results
We applied our method to data from mice and yeast. For the mice, we observed 49 significant genotype-by-ancestry interaction associations across 14 phenotypes as well as over 1,400 Bonferroni-corrected genotype-by-ancestry interaction associations for mouse gene expression data. For the yeast, we observed 92 significant genotype-by-ancestry interactions across 38 phenotypes. Given this evidence of epistasis, we test for and observe evidence of rapid selection pressure on ancestry specific polymorphisms within one of the cohorts, consistent with epistatic selection.
Conclusions
Unlike our prior work in human populations, we observe widespread evidence of ancestry-modified SNP effects, perhaps reflecting the greater divergence present in crosses using mice and yeast.
Klíčová slova:
Epistasis – Genetic loci – Inbred strains – Mammalian genomics – Mouse models – Phenotypes – Single nucleotide polymorphisms – Yeast
Zdroje
1. Polderman TJC, Benyamin B, de Leeuw C a, Sullivan PF, van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. Nature Publishing Group; 2015;47 : 702–709. doi: 10.1038/ng.3285 25985137
2. Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. Public Library of Science; 2008;4:e1000008. doi: 10.1371/journal.pgen.1000008 18454194
3. Fish AE, Capra JA, Bush WS. Are Interactions between cis-Regulatory Variants Evidence for Biological Epistasis or Statistical Artifacts? Am J Hum Genet. Elsevier; 2016;99 : 817–830. doi: 10.1016/j.ajhg.2016.07.022 27640306
4. Mäki-Tanila A, Hill WG. Influence of gene interaction on complex trait variation with multilocus models. Genetics. Genetics Society of America; 2014;198 : 355–67. doi: 10.1534/genetics.114.165282 24990992
5. Huang W, Richards S, Carbone MA, Zhu D, Anholt RRH, Ayroles JF, et al. Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci U S A. 2012; doi: 10.1073/pnas.1213423109 22949659
6. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, et al. A global genetic interaction network maps a wiring diagram of cellular function. Science (80-). 2016; doi: 10.1126/science.aaf1420 27708008
7. Tyler AL, Donahue LR, Churchill GA, Carter GW. Weak Epistasis Generally Stabilizes Phenotypes in a Mouse Intercross. PLoS Genet. Public Library of Science; 2016;12:e1005805. doi: 10.1371/journal.pgen.1005805 26828925
8. Varón-González C, Navarro N. Epistasis regulates the developmental stability of the mouse craniofacial shape. Heredity (Edinb). Nature Publishing Group; 2018; 1. doi: 10.1038/s41437-018-0140-8 30209292
9. Hemani G, Shakhbazov K, Westra H-J, Esko T, Henders AK, McRae AF, et al. Detection and replication of epistasis influencing transcription in humans. Nature. Nature Publishing Group; 2014;508 : 249–53. doi: 10.1038/nature13005 24572353
10. Park DS, Eskin I, Kang EY, Gamazon ER, Eng C, Gignoux CR, et al. An ancestry-based approach for detecting interactions. Genet Epidemiol. Wiley-Blackwell; 2018;42 : 49–63. doi: 10.1002/gepi.22087 29114909
11. Sittig LJ, Carbonetto P, Engel KA, Krauss KS, Barrios-Camacho CM, Palmer AA. Genetic Background Limits Generalizability of Genotype-Phenotype Relationships. Neuron. Cell Press; 2016;91 : 1253–1259. doi: 10.1016/j.neuron.2016.08.013 27618673
12. Lusis AJ, Seldin MM, Allayee H, Bennett BJ, Civelek M, Davis RC, et al. The Hybrid Mouse Diversity Panel: A Resource for Systems Genetics Analyses of Metabolic and Cardiovascular Traits. J Lipid Res. 2016;58 : 7250–7. doi: 10.1194/jlr.R066944 27099397
13. Philip VM, Sokoloff G, Ackert-Bicknell CL, Striz M, Branstetter L, Beckmann MA, et al. Genetic analysis in the Collaborative Cross breeding population. Genome Res. 2011; doi: 10.1101/gr.113886.110 21734011
14. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics. 2004. doi: 10.1038/ng1104-1133 15514660
15. Andreux PA, Williams EG, Koutnikova H, Houtkooper RH, Champy MF, Henry H, et al. Systems genetics of metabolism: The use of the BXD murine reference panel for multiscalar integration of traits. Cell. 2012; doi: 10.1016/j.cell.2012.08.012 22939713
16. Solberg Woods LC, Palmer AA. Using Heterogeneous Stocks for Fine-Mapping Genetically Complex Traits. Methods in Molecular Biology. Humana Press Inc.; 2019. pp. 233–247. doi: 10.1007/978-1-4939-9581-3_11 31228160
17. King EG, Merkes CM, McNeil CL, Hoofer SR, Sen S, Broman KW, et al. Genetic dissection of a model complex trait using the Drosophila Synthetic Population Resource. Genome Res. 2012; doi: 10.1101/gr.134031.111 22496517
18. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. Efficient control of population structure in model organism association mapping. Genetics. 2008;178 : 1709–1723. doi: 10.1534/genetics.107.080101 18385116
19. Gonzales NM, Seo J, Hernandez Cordero AI, St. Pierre CL, Gregory JS, Distler MG, et al. Genome wide association analysis in a mouse advanced intercross line. Nat Commun. 2018; doi: 10.1038/s41467-018-07642-8 30514929
20. Bloom JS, Boocock J, Treusch S, Sadhu MJ, Day L, Oates-Barker H, et al. Rare variants contribute disproportionately to quantitative trait variation in yeast. Elife. 2019; doi: 10.7554/eLife.49212 31647408
21. Jha SK, Rauniyar K, Jeltsch M. Key molecules in lymphatic development, function, and identification. Ann Anat—Anat Anzeiger. 2018;219 : 25–34. doi: 10.1016/j.aanat.2018.05.003 29842991
22. Afratis NA, Selman M, Pardo A, Sagi I. Emerging insights into the role of matrix metalloproteases as therapeutic targets in fibrosis. Matrix Biol. 2018;68–69 : 167–179. doi: 10.1016/j.matbio.2018.02.007 29428229
23. Cerdà-Costa N, Gomis-Rüth FX. Architecture and function of metallopeptidase catalytic domains. Protein Sci. 2014;23 : 123–44. Available: http://www.ncbi.nlm.nih.gov/pubmed/24596965 doi: 10.1002/pro.2400 24596965
24. Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemers N, et al. A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res. 2010;20 : 281–290. doi: 10.1101/gr.099234.109 20054062
25. Sul JH, Bilow M, Yang W-Y, Kostem E, Furlotte N, He D, et al. Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models. Schork NJ, editor. PLOS Genet. 2016;12:e1005849. doi: 10.1371/journal.pgen.1005849 26943367
26. Ghazalpour A, Rau CDCD, Farber CRCR, Bennett BJBJ, Orozco LDLD, Van Nas A, et al. Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mamm Genome. 2012;23 : 680–92. doi: 10.1007/s00335-012-9411-5 22892838
27. Rau CD, Wang J, Avetisyan R, Romay MC, Martin L, Ren S, et al. Mapping genetic contributions to cardiac pathology induced by beta-adrenergic stimulation in mice. Circ Cardiovasc Genet. 2015;8. doi: 10.1161/CIRCGENETICS.113.000732 25480693
28. Parks BWW, Sallam T, Mehrabian M, Psychogios N, Hui STT, Norheim F, et al. Genetic Architecture of Insulin Resistance in the Mouse. Cell Metab. 2015;21 : 334–346. doi: 10.1016/j.cmet.2015.01.002 25651185
29. Rau CD, Wang J, Avetisyan R, Romay MC, Martin L, Ren S, et al. Mapping genetic contributions to cardiac pathology induced by beta-adrenergic stimulation in mice. Circ Cardiovasc Genet. 2015;8 : 40–49. doi: 10.1161/CIRCGENETICS.113.000732 25480693
30. Wang JJ-C, Rau C, Avetisyan R, Ren S, Romay MCMC, Stolin G, et al. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model. PLoS Genet. 2016;12 : 1–30. doi: 10.1371/journal.pgen.1006038 27385019
31. Gibbs GM, Scanlon MJ, Swarbrick J, Curtis S, Gallant E, Dulhunty AF, et al. The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2+ signaling. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2006;281 : 4156–63. doi: 10.1074/jbc.M506849200 16339766
32. Zhang S, Liu X, Bawa-Khalfe T, Lu L-S, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18 : 1639–1642. doi: 10.1038/nm.2919 23104132
33. Albino-Sanchez M, Vazquez-Hernandez J, Ocadiz-Delgado R, Serafin-Higuera N, León-Galicia I, Garcia-Villa E, et al. Decreased RARβ expression induces abundant inflammation and cervical precancerous lesions. Exp Cell Res. 2016;346 : 40–52. doi: 10.1016/j.yexcr.2016.05.010 27207583
34. Wyler DJ. Fibrosin, a Novel Fibrogenic Protein: Discovery, Cloning and Implications for Fibrotic Disorders. Int Arch Allergy Immunol. 1996;111 : 326–329. doi: 10.1159/000237388 8957104
35. White GR, Varley JM, Heighway J. Genomic structure and expression profile of LPHH1, a 7TM gene variably expressed in breast cancer cell lines. Biochim Biophys Acta. 2000;1491 : 75–92. Available: http://www.ncbi.nlm.nih.gov/pubmed/10760572 doi: 10.1016/s0167-4781(00)00020-8 10760572
36. Rau CD, Romay MC, Tuteryan M, Wang JJ-C, Santolini M, Ren S, et al. Systems Genetics Approach Identifies Gene Pathways and Adamts2 as Drivers of Isoproterenol-Induced Cardiac Hypertrophy and Cardiomyopathy in Mice. Cell Syst. Elsevier Inc.; 2017;4 : 121–128.e4. doi: 10.1016/j.cels.2016.10.016 27866946
37. Lara-Pezzi E, Gómez-Salinero J, Gatto A, García-Pavía P. The Alternative Heart: Impact of Alternative Splicing in Heart Disease. J Cardiovasc Transl Res. 2013;6 : 945–955. doi: 10.1007/s12265-013-9482-z 23775418
38. Schumer M, Brandvain Y. Determining epistatic selection in admixed populations. Mol Ecol. 2016; doi: 10.1111/mec.13641 27061282
39. Ehrenreich IM. Epistasis: Searching for interacting genetic variants using crosses. Genetics. 2017. doi: 10.1534/genetics.117.203059 28592494
40. Corbett-Detig RB, Zhou J, Clark AG, Hartl DL, Ayroles JF. Genetic incompatibilities are widespread within species. Nature. 2013; doi: 10.1038/nature12678 24196712
41. Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, Shorter JR, et al. Genomes of the mouse collaborative cross. Genetics. 2017; doi: 10.1534/genetics.116.198838 28592495
42. Wang Y, Alla V, Goody D, Gupta SK, Spitschak A, Wolkenhauer O, et al. Epigenetic factor EPC1 is a master regulator of DNA damage response by interacting with E2F1 to silence death and activate metastasis-related gene signatures. Nucleic Acids Res. 2016;44 : 117–133. doi: 10.1093/nar/gkv885 26350215
43. Kee HJ, Kim J-R, Nam K-I, Park HY, Shin S, Kim JC, et al. Enhancer of Polycomb1, a Novel Homeodomain Only Protein-binding Partner, Induces Skeletal Muscle Differentiation. J Biol Chem. 2007;282 : 7700–7709. doi: 10.1074/jbc.M611198200 17192267
44. Combarros O, Cortina-Borja M, Smith AD, Lehmann DJ. Epistasis in sporadic Alzheimer’s disease. Neurobiol Aging. 2009;30 : 1333–1349. doi: 10.1016/j.neurobiolaging.2007.11.027 18206267
45. Badano JL, Leitch CC, Ansley SJ, May-Simera H, Lawson S, Lewis RA, et al. Dissection of epistasis in oligogenic Bardet–Biedl syndrome. Nature. Nature Publishing Group; 2006;439 : 326–330. doi: 10.1038/nature04370 16327777
46. Mackay TF, Moore JH. Why epistasis is important for tackling complex human disease genetics. Genome Med. BioMed Central; 2014;6 : 125. doi: 10.1186/gm561 25031624
47. Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res. Cold Spring Harbor Laboratory Press; 2015;25 : 775–91. doi: 10.1101/gr.187450.114 25953951
48. Ackerman KG, Huang H, Grasemann H, Puma C, Singer JB, Hill AE, et al. Interacting genetic loci cause airway hyperresponsiveness. Physiol Genomics. 2005;21 : 105–111. doi: 10.1152/physiolgenomics.00267.2004 15657107
49. Street VA, Kujawa SG, Manichaikul A, Broman KW, Kallman JC, Shilling DJ, et al. Resistance to Noise-Induced Hearing Loss in 129S6 and MOLF Mice: Identification of Independent, Overlapping, and Interacting Chromosomal Regions. J Assoc Res Otolaryngol. Springer US; 2014;15 : 721–738. doi: 10.1007/s10162-014-0472-x 24952082
50. Fuchs SBA, Lieder I, Stelzer G, Mazor Y, Buzhor E, Kaplan S, et al. GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data. Omi A J Integr Biol. 2016; doi: 10.1089/omi.2015.0168 26983021
Článek Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traitsČlánek Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 proteaseČlánek Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantationČlánek RNA-directed DNA MethylationČlánek Selection and hybridization shaped the rapid spread of African honey bee ancestry in the AmericasČlánek Insulin signaling represents a gating mechanism between different memory phases in Drosophila larvaeČlánek DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyaminesČlánek Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 10- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Pomůže AI k rychlejšímu vývoji antibiotik na kapavku a MRSA?
- Psilocybin a neurodegenerace: Kam míří současný výzkum?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
-
Všechny články tohoto čísla
- Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots
- A single Ho-induced double-strand break at the MAT locus is lethal in Candida glabrata
- A Rad51-independent pathway promotes single-strand template repair in gene editing
- Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits
- C. elegans CLASP/CLS-2 negatively regulates membrane ingression throughout the oocyte cortex and is required for polar body extrusion
- Dual function of perivascular fibroblasts in vascular stabilization in zebrafish
- The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress
- Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes
- A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO
- How noncrossover homologs are conjoined and segregated in Drosophila male meiosis I: Stable but reversible homolog linkers require a novel Separase target protein
- Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease
- Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion
- Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation
- Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability
- RNA-directed DNA Methylation
- The DNA methylome of human sperm is distinct from blood with little evidence for tissue-consistent obesity associations
- A cautionary note on the use of unsupervised machine learning algorithms to characterise malaria parasite population structure from genetic distance matrices
- Selection and hybridization shaped the rapid spread of African honey bee ancestry in the Americas
- Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells
- Selection for ancient periodic motifs that do not impart DNA bending
- The ninth life of the cat reference genome, Felis_catus
- The Ccr4-Not complex regulates TORC1 signaling and mitochondrial metabolism by promoting vacuole V-ATPase activity
- Mutation of NEKL-4/NEK10 and TTLL genes suppress neuronal ciliary degeneration caused by loss of CCPP-1 deglutamylase function
- Phenotype-genotype comorbidity analysis of patients with rare disorders provides insight into their pathological and molecular bases
- Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms
- Insulin signaling represents a gating mechanism between different memory phases in Drosophila larvae
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Identification of the transcription factor Miz1 as an essential regulator of diphthamide biosynthesis using a CRISPR-mediated genome-wide screen
- Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function
- PE homeostasis rebalanced through mitochondria-ER lipid exchange prevents retinal degeneration in Drosophila
- Chromosome number evolves at equal rates in holocentric and monocentric clades
- Genetically predicted telomere length is associated with clonal somatic copy number alterations in peripheral leukocytes
- Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy
- Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations
- DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines
- Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing
- Automated feature extraction from population wearable device data identified novel loci associated with sleep and circadian rhythms
- Exploring the Complexity of Protein-Level Dosage Compensation that Fine-Tunes Stoichiometry of Multiprotein Complexes
- Diversified regulation of circadian clock gene expression following whole genome duplication
- Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development
- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- Tissue-specific isoforms of the single C. elegans Ryanodine receptor gene unc-68 control specific functions
- A high-throughput CRISPR interference screen for dissecting functional regulators of GPCR/cAMP signaling
- CenH3 distribution reveals extended centromeres in the model beetle Tribolium castaneum
- Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression
- Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum
- Correction: Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development
- Correction: Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis
- Correction: Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma
- Drosophila Caliban preserves intestinal homeostasis and lifespan through regulating mitochondrial dynamics and redox state in enterocytes
- A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank
- Correction: A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage
- Correction: Architecture of the Escherichia coli nucleoid
- Correction: The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes
- Correction: Telomere length-dependent transcription and epigenetic modifications in promoters remote from telomere ends
- Evolution of linkage and genome expansion in protocells: The origin of chromosomes
- Correction: yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
- Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches
- Correction: Leveraging correlations between variants in polygenic risk scores to detect heterogeneity in GWAS cohorts
- Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for “polygenic epistasis”
- DOT-1.1-dependent H3K79 methylation promotes normal meiotic progression and meiotic checkpoint function in C. elegans
- Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change
- AKH-FOXO pathway regulates starvation-induced sleep loss through remodeling of the small ventral lateral neuron dorsal projections
- Function of multiple sclerosis-protective HLA class I alleles revealed by genome-wide protein-quantitative trait loci mapping of interferon signalling
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- RNA-directed DNA Methylation
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Autoři: prof. MUDr. Hana Rosolová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání