-
Články
- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon
Autoři: Jukka-Pekka Verta aff001; Paul Vincent Debes aff001; Nikolai Piavchenko aff001; Annukka Ruokolainen aff001; Outi Ovaskainen aff001; Jacqueline Emmanuel Moustakas-Verho aff001; Seija Tillanen aff001; Noora Parre aff001; Tutku Aykanat aff001; Jaakko Erkinaro aff003; Craig Robert Primmer aff001
Působiště autorů: Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland aff001; Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari, Helsinki, Finland aff001; Institute of Biotechnology, University of Helsinki, Finland aff002; Natural Resources Institute Finland (LUKE), Oulu, Finland aff003
Vyšlo v časopise: Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon. PLoS Genet 16(9): e32767. doi:10.1371/journal.pgen.1009055
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009055Souhrn
A major goal in biology is to understand how evolution shapes variation in individual life histories. Genome-wide association studies have been successful in uncovering genome regions linked with traits underlying life history variation in a range of species. However, lack of functional studies of the discovered genotype-phenotype associations severely restrains our understanding how alternative life history traits evolved and are mediated at the molecular level. Here, we report a cis-regulatory mechanism whereby expression of alternative isoforms of the transcription co-factor vestigial-like 3 (vgll3) associate with variation in a key life history trait, age at maturity, in Atlantic salmon (Salmo salar). Using a common-garden experiment, we first show that vgll3 genotype associates with puberty timing in one-year-old salmon males. By way of temporal sampling of vgll3 expression in ten tissues across the first year of salmon development, we identify a pubertal transition in vgll3 expression where maturation coincided with a 66% reduction in testicular vgll3 expression. The late maturation allele was not only associated with a tendency to delay puberty, but also with expression of a rare transcript isoform of vgll3 pre-puberty. By comparing absolute vgll3 mRNA copies in heterozygotes we show that the expression difference between the early and late maturity alleles is largely cis-regulatory. We propose a model whereby expression of a rare isoform from the late allele shifts the liability of its carriers towards delaying puberty. These results exemplify the potential importance of regulatory differences as a mechanism for the evolution of life history traits.
Klíčová slova:
Alleles – Fish – Genetic polymorphism – Gonads – Heterozygosity – Puberty – Testes – 5' UTR
Zdroje
1. Stearns SC. The evolution of life histories. Oxford University Press; 1992.
2. Stearns SC. Life history evolution: successes, limitations, and prospects. Naturwissenschaften. 2000;87 : 476–486. doi: 10.1007/s001140050763 11151666
3. Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature. 2013;502 : 93–95. doi: 10.1038/nature12489 23965625
4. Barson NJ, Aykanat T, Hindar K, Baranski M, Bolstad GH, Fiske P, et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature. 2015;528 : 405–408. doi: 10.1038/nature16062 26536110
5. Ayllon F, Kjaerner-Semb E, Furmanek T, Wennevik V, Solberg MF, Dahle G, et al. The vgll3 locus controls age at maturity in wild and domesticated Atlantic salmon (Salmo salar L.) males. PLoS Genet. 2015;11. doi: 10.1371/journal.pgen.1005628 26551894
6. Prince DJ, O’Rourke SM, Thompson TQ, Ali OA, Lyman HS, Saglam IK, et al. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci Adv. 2017;3: e1603198. doi: 10.1126/sciadv.1603198 28835916
7. Narum SR, Genova AD, Micheletti SJ, Maass A. Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon. Proc Biol Sci. 2018;285. doi: 10.1098/rspb.2018.0935 30051839
8. Hess JE, Zendt JS, Matala AR, Narum SR. Genetic basis of adult migration timing in anadromous steelhead discovered through multivariate association testing. Proc Biol Sci. 2016;283 : 20153064. doi: 10.1098/rspb.2015.3064 27170720
9. Troth A, Puzey JR, Kim RS, Willis JH, Kelly JK. Selective trade-offs maintain alleles underpinning complex trait variation in plants. Science. 2018;361 : 475–478. doi: 10.1126/science.aat5760 30072534
10. Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet. 2016;48 : 84–88. doi: 10.1038/ng.3430 26569123
11. Heyland A, Flatt T. Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-Offs. OUP Oxford; 2011.
12. Fleming IA, Einum S. Reproductive Ecology: A Tale of Two Sexes. In: Aas O, Einum S, Klemetsen A, Skurdal J, editors. Atlantic Salmon Ecology. Wiley-Blackwell; 2010. pp. 33–65. doi: 10.1002/9781444327755.ch2
13. Mobley KB, Granroth-Wilding H, Ellmen M, Vaha J-P, Aykanat T, Johnston SE, et al. Home ground advantage: Local Atlantic salmon have higher reproductive fitness than dispersers in the wild. Sci Adv. 2019;5: eaav1112. doi: 10.1126/sciadv.aav1112 30820455
14. Fleming IA. Pattern and variability in the breeding system of Atlantic salmon (Salmo salar), with comparisons to other salmonids. Can J Fish Aquat Sci. 1998;55 : 59–76.
15. Czorlich Y, Aykanat T, Erkinaro J, Orell P, Primmer CR. Rapid sex-specific evolution of age at maturity is shaped by genetic architecture in Atlantic salmon. Nat Ecol Evol. 2018;2 : 1800–1807. doi: 10.1038/s41559-018-0681-5 30275465
16. Cousminer DL, Berry DJ, Timpson NJ, Ang W, Thiering E, Byrne EM, et al. Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity. Hum Mol Genet. 2013;22 : 2735–2747. doi: 10.1093/hmg/ddt104 23449627
17. Perry JRB, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T, et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514 : 92–+. doi: 10.1038/nature13545 25231870
18. Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA, Abadía-Cardoso A, et al. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat Ecol Evol. 2019;69 : 1–12. doi: 10.1038/s41559-019-1044-6
19. Lamichhaney S, Fuentes-Pardo AP, Rafati N, Ryman N, McCracken GR, Bourne C, et al. Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proc Natl Acad Sci U S A. 2017;54 : 201617728–E3461. doi: 10.1073/pnas.1617728114 28389569
20. Bateman JR, Johnson JE, Locke MN. Comparing enhancer action in cis and in trans. Genetics. 2012;191 : 1143–1155. doi: 10.1534/genetics.112.140954 22649083
21. Tian K, Henderson RE, Parker R, Brown A, Johnson JE, Bateman JR. Two modes of transvection at the eyes absent gene of Drosophila demonstrate plasticity in transcriptional regulatory interactions in cis and in trans. Bosco G, editor. PLoS Genet. 2019;15: e1008152. doi: 10.1371/journal.pgen.1008152 31075100
22. Reyes A, Huber W. Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Res. 2018;46 : 582–592. doi: 10.1093/nar/gkx1165 29202200
23. Wang X, Hou J, Quedenau C, Chen W. Pervasive isoform-specific translational regulation via alternative transcription start sites in mammals. Mol Syst Biol. 2016;12 : 875. doi: 10.15252/msb.20166941 27430939
24. Wiestner A, Schlemper RJ, Maas A van der, Skoda RC. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat Genet. 1998;18 : 49–52. doi: 10.1038/ng0198-49 9425899
25. Halperin DS, Pan C, Lusis AJ, Tontonoz P. Vestigial-like 3 is an inhibitor of adipocyte differentiation. J Lipid Res. 2013;54 : 473–481. doi: 10.1194/jlr.M032755 23152581
26. Figeac N, Mohamed AD, Sun C, Schönfelder M, Matallanas D, Garcia-Munoz A, et al. VGLL3 operates via TEAD1, TEAD3 and TEAD4 to influence myogenesis in skeletal muscle. J Cell Sci. 2019;132: jcs225946. doi: 10.1242/jcs.225946 31138678
27. Kjaerner-Semb E, Ayllon F, Kleppe L, Sørhus E, Skaftnesmo K, Furmanek T, et al. Vgll3 and the Hippo pathway are regulated in Sertoli cells upon entry and during puberty in Atlantic salmon testis. Sci Rep. 2018;8 : 1912. doi: 10.1038/s41598-018-20308-1 29382956
28. Kurko J, Debes PV, House A, Aykanat T, Erkinaro J, Primmer CR. Transcription Profiles of Age-at-Maturity-Associated Genes Suggest Cell Fate Commitment Regulation as a Key Factor in the Atlantic Salmon Maturation Process. G3 (Bethesda). 2019; g3.400882.2019. doi: 10.1534/g3.119.400882 31740454
29. Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, et al. Control of puberty in farmed fish. Gen Comp Endocrinol. 2010;165 : 483–515. doi: 10.1016/j.ygcen.2009.05.004 19442666
30. Debes PV, Piavchenko N, Ruokolainen A, Ovaskainen O, Moustakas-Verho JE, Parre N, et al. Large single-locus effects for maturation timing are mediated via condition variation in Atlantic salmon. bioRxiv. 2019;11 : 780437. doi: 10.1101/780437
31. Schulz RW, Franca LR, Lareyre J-J, LeGac F, Chiarini-Garcia H, Nobrega RH, et al. Spermatogenesis in fish. Gen Comp Endocrinol. 2010;165 : 390–411. doi: 10.1016/j.ygcen.2009.02.013 19348807
32. Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish—Multiple functions not restricted to the gonads. Gen Comp Endocrinol. 2015;223 : 87–107. doi: 10.1016/j.ygcen.2015.09.025 26428616
33. Morais R, Crespo D, Nobrega RH, Lemos MS, Kant HJG van de, Franca LR, et al. Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Mol Cell Endocrinol. 2017;454 : 112–124. doi: 10.1016/j.mce.2017.06.017 28645700
34. Skaftnesmo KO, Edvardsen RB, Furmanek T, Crespo D, Andersson E, Kleppe L, et al. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon. BMC Genomics. 2017;18 : 801. doi: 10.1186/s12864-017-4205-5 29047327
35. Scrucca L, Fop M, Murphy TB, Raftery AE. mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R journal. 2016;8 : 289–317. doi: 10.1186/s12942-015-0017-5 27818791
36. Meng Z, Moroishi T, Guan K-L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30 : 1–17. doi: 10.1101/gad.274027.115 26728553
37. Simon E, Faucheux C, Zider A, Theze N, Thiebaud P. From vestigial to vestigial-like: the Drosophila gene that has taken wing. Dev Genes Evol. 2016;226 : 297–315. doi: 10.1007/s00427-016-0546-3 27116603
38. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7 : 562–578. doi: 10.1038/nprot.2012.016 22383036
39. Wittkopp PJ, Haerum BK, Clark AG. Evolutionary changes in cis and trans gene regulation. Nature. 2004;430 : 85–88. doi: 10.1038/nature02698 15229602
40. Sendoel A, Dunn JG, Rodriguez EH, Naik S, Gomez NC, Hurwitz B, et al. Translation from unconventional 5′ start sites drives tumour initiation. Nature. 2017;541 : 494–499. doi: 10.1038/nature21036 28077873
41. (DGT) TFC and the RP and C. A promoter-level mammalian expression atlas. Nature. 2014;507 : 462–470. doi: 10.1038/nature13182 24670764
42. Burtis KC, Baker BS. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell. 1989;56 : 997–1010. doi: 10.1016/0092-8674(89)90633-8 2493994
43. Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The Evolutionary Landscape of Alternative Splicing in Vertebrate Species. Science. 2012;338 : 1587–1593. doi: 10.1126/science.1230612 23258890
44. Gao Q, Sun W, Ballegeer M, Libert C, Chen W. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol Syst Biol. 2015;11 : 816. doi: 10.15252/msb.20145970 26134616
45. Haberle V, Start A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Bio. 2018;10 : 621–637. doi: 10.1038/s41580-018-0028-8 29946135
46. Carroll SB. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell. 2008;134 : 25–36. doi: 10.1016/j.cell.2008.06.030 18614008
47. Schwartz C, Balasubramanian S, Warthmann N, Michael TP, Lempe J, Sureshkumar S, et al. Cis-regulatory Changes at FLOWERING LOCUS T Mediate Natural Variation in Flowering Responses of Arabidopsis thaliana. Genetics. 2009;183 : 723–732. doi: 10.1534/genetics.109.104984 19652183
48. Chan YF, Marks ME, Jones FC, Villarreal G, Shapiro MD, Brady SD, et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science. 2010;327 : 302–305. doi: 10.1126/science.1182213 20007865
49. Frankel N, Erezyilmaz DF, McGregor AP, Wang S, Payre F, Stern DL. Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature. 2011;474 : 598–603. doi: 10.1038/nature10200 21720363
50. O’Brown NM, Summers BR, Jones FC, Brady SD, Kingsley DM. A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA. Elife. 2015;4. doi: 10.7554/elife.05290 25629660
51. Indjeian VB, Kingman GA, Jones FC, Guenther CA, Grimwood J, Schmutz J, et al. Evolving new skeletal traits by cis-regulatory changes in mone morphogenetic proteins. Cell. 2016;164 : 45–56. doi: 10.1016/j.cell.2015.12.007 26774823
52. Gautier M, Yamaguchi J, Foucaud J, Loiseau A, Ausset A, Facon B, et al. The genomic basis of color pattern polymorphism in the harlequin ladybird. Curr Biol. 2018;28 : 1–7. doi: 10.1016/j.cub.2017.11.007 29249662
53. Wang J, Liu S, Heallen T, Martin JF. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol. 2018;15 : 672–684. doi: 10.1038/s41569-018-0063-3 30111784
54. Stern DL, Orgogozo V. The loci of evolution: how predictable is genetic evolution? Evolution. 2008;62 : 2155–2177. doi: 10.1111/j.1558-5646.2008.00450.x 18616572
55. Price T, Schluter D. ON THE LOW HERITABILITY OF LIFE-HISTORY TRAITS. Evolution. 1991;45 : 853–861. doi: 10.1111/j.1558-5646.1991.tb04354.x 28564058
56. Erkinaro J, Laine A, Maki-Petays A, Karjalainen TP, Laajala E, Hirvonen A, et al. Restoring migratory salmonid populations in regulated rivers in the northernmost Baltic Sea area, Northern Finland—biological, technical and social challenges. J Appl Ichthyol. 2011;27 : 45–52. doi: 10.1111/j.1439-0426.2011.01851.x
57. Aykanat T, Lindqvist M, Pritchard VL, Primmer CR. From population genomics to conservation and management: a workflow for targeted analysis of markers identified using genome-wide approaches in Atlantic salmon Salmo salar. J Fish Biol. 2016;89 : 2658–2679. doi: 10.1111/jfb.13149 27709620
58. Anderson EC. Computational algorithms and user-friendly software for parentage-based tagging of Pacific salmonids. Final report submitted to the Pacific Salmon Commission's Chinook Technical Committee (US Section). 2010 : 46.
59. Sorensen DA, Genetics SA, 1995. Bayesian inference in threshold models using Gibbs sampling. Genet Sel Evol. 1995;27 : 229–249.
60. Hadfield JD. Increasing the efficiency of MCMC for hierarchical phylogenetic models of categorical traits using reduced mixed models. O’Hara RB, editor. Methods in Ecology and Evolution. 2015;6 : 706–714. doi: 10.1111/2041-210x.12354
61. R Core Team. R: A Language and Environment for Statistical Computing. 2013;
62. Hadfield J. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw. 2010;33 : 1–22. 20808728
63. Henderson C. Sire evaluation and genetic trends. J Anim Ecol. 1973; 10–43. doi: 10.1093/ansci/1973.symposium.10
64. Villemereuil P de, Gimenez O, Doligez B. Comparing parent–offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian and binary traits. Freckleton R, editor. Methods in Ecology and Evolution. 2013;4 : 260–275. doi: 10.1111/2041-210x.12011
65. Heidelberger P, Welch PD. A spectral method for confidence interval generation and run length control in simulations. Commun ACM. 1981;24 : 233–245. doi: 10.1145/358598.358630
66. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Meth. 2013;10 : 1003–1005. doi: 10.1038/nmeth.2633 23995387
67. Laitinen RAE, Immanen J, Auvinen P, Rudd S, Alatalo E, Paulin L, et al. Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Res. 2005;15 : 475–486. doi: 10.1101/gr.3043705 15781570
68. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34: i884–i890. doi: 10.1093/bioinformatics/bty560 30423086
69. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29 : 15–21. doi: 10.1093/bioinformatics/bts635 23104886
70. Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533 : 200–205. doi: 10.1038/nature17164 27088604
71. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biol. 2014;15 : 550. doi: 10.1186/s13059-014-0550-8 25516281
72. Abu-Jamous B, Kelly S. Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data. Genome biol. 2018;19 : 172. doi: 10.1186/s13059-018-1536-8 30359297
73. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16 : 284–287. doi: 10.1089/omi.2011.0118 22455463
74. Garrido-Martín D, Palumbo E, Guigó R, Breschi A. ggsashimi: Sashimi plot revised for browser - and annotation-independent splicing visualization. Plos Comput Biol. 2018;14: e1006360. doi: 10.1371/journal.pcbi.1006360 30118475
75. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat biotechnol. 2011;29 : 24–26. doi: 10.1038/nbt.1754 21221095
76. Verta J-P, Debes PV, Piavchenko N, Ruokolainen A, Ovaskainen O, Moustakas-Verho JE, et al. (2020) Data from: Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon. Dryad Digital Repository https://doi.org/10.5061/dryad.k6djh9w4w.
Článek TENET 2.0: Identification of key transcriptional regulators and enhancers in lung adenocarcinomaČlánek Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 9- Pomůže AI k rychlejšímu vývoji antibiotik na kapavku a MRSA?
- Kompetence lékárníků v Evropě – čím je možné se inspirovat
- Parafiny v rukou lékárníka: Proč je technologie potřebuje a mýty zneužívají?
- Může AI vyřešit nedostatek zdravotníků v Evropě?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
-
Všechny články tohoto čísla
- Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons
- Coordinate genomic association of transcription factors controlled by an imported quorum sensing peptide in Cryptococcus neoformans
- Using prior information from humans to prioritize genes and gene-associated variants for complex traits in livestock
- The STRIPAK signaling complex regulates dephosphorylation of GUL1, an RNA-binding protein that shuttles on endosomes
- PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning
- Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity
- A mega-analysis of expression quantitative trait loci in retinal tissue
- Genetic analysis of the modern Australian labradoodle dog breed reveals an excess of the poodle genome
- Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II
- Imaginal disc growth factor maintains cuticle structure and controls melanization in the spot pattern formation of Bombyx mori
- The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression
- A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy
- Excess crossovers impede faithful meiotic chromosome segregation in C. elegans
- Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon
- Male-biased aganglionic megacolon in the TashT mouse model of Hirschsprung disease involves upregulation of p53 protein activity and Ddx3y gene expression
- Candidate variants in TUB are associated with familial tremor
- Restriction on self-renewing asymmetric division is coupled to terminal asymmetric division in the Drosophila CNS
- Leveraging correlations between variants in polygenic risk scores to detect heterogeneity in GWAS cohorts
- ZNF423 patient variants, truncations, and in-frame deletions in mice define an allele-dependent range of midline brain abnormalities
- The causal effect of obesity on prediabetes and insulin resistance reveals the important role of adipose tissue in insulin resistance
- Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences
- Deficiency of the Tbc1d21 gene causes male infertility with morphological abnormalities of the sperm mitochondria and flagellum in mice
- TENET 2.0: Identification of key transcriptional regulators and enhancers in lung adenocarcinoma
- Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty
- Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD
- A nonsense variant in Rap Guanine Nucleotide Exchange Factor 5 (RAPGEF5) is associated with equine familial isolated hypoparathyroidism in Thoroughbred foals
- Mutually exclusive dendritic arbors in C. elegans neurons share a common architecture and convergent molecular cues
- Polygenic risk for autism spectrum disorder associates with anger recognition in a neurodevelopment-focused phenome-wide scan of unaffected youths from a population-based cohort
- Aldh inhibitor restores auditory function in a mouse model of human deafness
- AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana
- NFIA differentially controls adipogenic and myogenic gene program through distinct pathways to ensure brown and beige adipocyte differentiation
- Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase
- Snf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response
- Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon
- Correction: Systems genomics approaches provide new insights into Arabidopsis thaliana root growth regulation under combinatorial mineral nutrient limitation
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon
- Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons
- Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II
- Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Autoři: prof. MUDr. Hana Rosolová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání