-
Články
- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning
Autoři: Hai Wei aff001; Eric J. Lambie aff001; Daniel S. Osório aff003; Ana X. Carvalho aff003; Barbara Conradt aff001
Působiště autorů: Department Biology II, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadener, Planegg-Martinsried, Germany aff001; Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom aff002; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal aff003; CIPSM–Center for Integrated Protein Science Munich, Butenandtstraße, München, Germany aff004
Vyšlo v časopise: PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning. PLoS Genet 16(9): e32767. doi:10.1371/journal.pgen.1008912
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008912Souhrn
The mechanism(s) through which mammalian kinase MELK promotes tumorigenesis is not understood. We find that the C. elegans orthologue of MELK, PIG-1, promotes apoptosis by partitioning an anti-apoptotic factor. The C. elegans NSM neuroblast divides to produce a larger cell that differentiates into a neuron and a smaller cell that dies. We find that in this context, PIG-1 MELK is required for partitioning of CES-1 Snail, a transcriptional repressor of the pro-apoptotic gene egl-1 BH3-only. pig-1 MELK is controlled by both a ces-1 Snail - and par-4 LKB1-dependent pathway, and may act through phosphorylation and cortical enrichment of nonmuscle myosin II prior to neuroblast division. We propose that pig-1 MELK-induced local contractility of the actomyosin network plays a conserved role in the acquisition of the apoptotic fate. Our work also uncovers an auto-regulatory loop through which ces-1 Snail controls its own activity through the formation of a gradient of CES-1 Snail protein.
Klíčová slova:
Apoptosis – Caenorhabditis elegans – Cell cycle and cell division – Fluorescence imaging – Metaphase – Myosins – Neuroblasts – Phosphorylation
Zdroje
1. Heyer BS, Warsowe J, Solter D, Knowles BB, Ackerman SL. New member of the Snf1/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo. Mol Reprod Dev. 1997;47(2):148–56. doi: 10.1002/(SICI)1098-2795(199706)47 : 2<148::AID-MRD4>3.0.CO;2-M 9136115.
2. Gil M, Yang Y, Lee Y, Choi I, Ha H. Cloning and expression of a cDNA encoding a novel protein serine/threonine kinase predominantly expressed in hematopoietic cells. Gene. 1997;195(2):295–301. doi: 10.1016/s0378-1119(97)00181-9 9305775.
3. Ganguly R, Mohyeldin A, Thiel J, Kornblum HI, Beullens M, Nakano I. MELK-a conserved kinase: functions, signaling, cancer, and controversy. Clin Transl Med. 2015;4 : 11. doi: 10.1186/s40169-014-0045-y 25852826; PubMed Central PMCID: PMC4385133.
4. Jiang P, Zhang D. Maternal embryonic leucine zipper kinase (MELK): a novel regulator in cell cycle control, embryonic development, and cancer. Int J Mol Sci. 2013;14(11):21551–60. doi: 10.3390/ijms141121551 24185907; PubMed Central PMCID: PMC3856021.
5. Perry NA, Fialkowski KP, Kaoud TS, Kaya AI, Chen AL, Taliaferro JM, et al. Arrestin-3 interaction with maternal embryonic leucine-zipper kinase. Cell Signal. 2019;63 : 109366. doi: 10.1016/j.cellsig.2019.109366 31352007; PubMed Central PMCID: PMC6717526.
6. Beullens M, Vancauwenbergh S, Morrice N, Derua R, Ceulemans H, Waelkens E, et al. Substrate specificity and activity regulation of protein kinase MELK. J Biol Chem. 2005;280(48):40003–11. doi: 10.1074/jbc.M507274200 16216881.
7. Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim SH, Mao P, Kig C, et al. MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem Cells. 2013;31(6):1051–63. doi: 10.1002/stem.1358 23404835; PubMed Central PMCID: PMC3744761.
8. Wang Y, Begley M, Li Q, Huang HT, Lako A, Eck MJ, et al. Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival. Proc Natl Acad Sci U S A. 2016;113(35):9810–5. doi: 10.1073/pnas.1606862113 27528663; PubMed Central PMCID: PMC5024598.
9. Pitner MK, Taliaferro JM, Dalby KN, Bartholomeusz C. MELK: a potential novel therapeutic target for TNBC and other aggressive malignancies. Expert Opin Ther Targets. 2017;21(9):849–59. doi: 10.1080/14728222.2017.1363183 28764577.
10. Lin A, Giuliano CJ, Sayles NM, Sheltzer JM. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials. Elife. 2017;6. doi: 10.7554/eLife.24179 28337968; PubMed Central PMCID: PMC5365317.
11. Toure BB, Giraldes J, Smith T, Sprague ER, Wang Y, Mathieu S, et al. Toward the Validation of Maternal Embryonic Leucine Zipper Kinase: Discovery, Optimization of Highly Potent and Selective Inhibitors, and Preliminary Biology Insight. J Med Chem. 2016;59(10):4711–23. doi: 10.1021/acs.jmedchem.6b00052 27187609.
12. Wang Y, Lee YM, Baitsch L, Huang A, Xiang Y, Tong H, et al. MELK is an oncogenic kinase essential for mitotic progression in basal-like breast cancer cells. Elife. 2014;3:e01763. doi: 10.7554/eLife.01763 24844244; PubMed Central PMCID: PMC4059381.
13. Wang Y, Li BB, Li J, Roberts TM, Zhao JJ. A Conditional Dependency on MELK for the Proliferation of Triple-Negative Breast Cancer Cells. iScience. 2018;9 : 149–60. doi: 10.1016/j.isci.2018.10.015 30391850; PubMed Central PMCID: PMC6215964.
14. Cordes S, Frank CA, Garriga G. The C. elegans MELK ortholog PIG-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions. Development. 2006;133(14):2747–56. doi: 10.1242/dev.02447 16774992.
15. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4 6684600
16. Liro MJ, Morton DG, Rose LS. The kinases PIG-1 and PAR-1 act in redundant pathways to regulate asymmetric division in the EMS blastomere of C. elegans. Dev Biol. 2018;444(1):9–19. doi: 10.1016/j.ydbio.2018.08.016 30213539; PubMed Central PMCID: PMC6238631.
17. Morton DG, Hoose WA, Kemphues KJ. A genome-wide RNAi screen for enhancers of par mutants reveals new contributors to early embryonic polarity in Caenorhabditis elegans. Genetics. 2012;192(3):929–42. doi: 10.1534/genetics.112.143727 22887819; PubMed Central PMCID: PMC3522167.
18. Pacquelet A, Uhart P, Tassan JP, Michaux G. PAR-4 and anillin regulate myosin to coordinate spindle and furrow position during asymmetric division. J Cell Biol. 2015;210(7):1085–99. doi: 10.1083/jcb.201503006 26416962; PubMed Central PMCID: PMC4586735.
19. Ou G, Stuurman N, D'Ambrosio M, Vale RD. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science. 2010;330(6004):677–80. doi: 10.1126/science.1196112 20929735; PubMed Central PMCID: PMC3032534.
20. Denning DP, Hatch V, Horvitz HR. Programmed elimination of cells by caspase-independent cell extrusion in C. elegans. Nature. 2012;488(7410):226–30. doi: 10.1038/nature11240 22801495; PubMed Central PMCID: PMC3416925.
21. Hirose T, Horvitz HR. An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways. Nature. 2013;500(7462):354–8. doi: 10.1038/nature12329 23851392; PubMed Central PMCID: PMC3748152.
22. Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75 : 137–63. doi: 10.1146/annurev.biochem.75.103004.142702 16756488.
23. Chien SC, Brinkmann EM, Teuliere J, Garriga G. Caenorhabditis elegans PIG-1/MELK Acts in a Conserved PAR-4/LKB1 Polarity Pathway to Promote Asymmetric Neuroblast Divisions. Genetics. 2013;193(3):897–909. doi: 10.1534/genetics.112.148106 23267054; PubMed Central PMCID: PMC3584005.
24. Ellis RE, Horvitz HR. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development. 1991;112(2):591–603. 1794327
25. Hatzold J, Conradt B. Control of apoptosis by asymmetric cell division. PLoS Biol. 2008;6(4):e84. Epub 2008/04/11. 07-PLBI-RA-2604 [pii] doi: 10.1371/journal.pbio.0060084 18399720; PubMed Central PMCID: PMC2288629.
26. Metzstein MM, Horvitz HR. The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol Cell. 1999;4(3):309–19. doi: 10.1016/s1097-2765(00)80333-0 10518212
27. Wei H, Yan B, Gagneur J, Conradt B. Caenorhabditis elegans CES-1 Snail Represses pig-1 MELK Expression To Control Asymmetric Cell Division. Genetics. 2017;206(4):2069–84. doi: 10.1534/genetics.117.202754 28652378; PubMed Central PMCID: PMC5560807.
28. Yan B, Memar N, Gallinger J, Conradt B. Coordination of cell proliferation and cell fate determination by CES-1 snail. PLoS Genet. 2013;9(10):e1003884. doi: 10.1371/journal.pgen.1003884 24204299; PubMed Central PMCID: PMC3814331.
29. Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977;56(1):110–56. doi: 10.1016/0012-1606(77)90158-0 838129
30. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44(6):817–29. doi: 10.1016/0092-8674(86)90004-8 3955651
31. Conradt B, Horvitz HR. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell. 1998;93(4):519–29. doi: 10.1016/s0092-8674(00)81182-4 9604928.
32. Conradt B, Horvitz HR. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell. 1999;98(3):317–27. doi: 10.1016/s0092-8674(00)81961-3 10458607.
33. Horvitz HR. Worms, life, and death (Nobel lecture). Chembiochem. 2003;4(8):697–711. doi: 10.1002/cbic.200300614 12898619.
34. Thellmann M, Hatzold J, Conradt B. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development. 2003;130(17):4057–71. doi: 10.1242/dev.00597 12874127.
35. Metzstein MM, Hengartner MO, Tsung N, Ellis RE, Horvitz HR. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature. 1996;382(6591):545–7. doi: 10.1038/382545a0 8700229
36. Chakraborty S, Lambie EJ, Bindu S, Mikeladze-Dvali T, Conradt B. Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential. Nat Commun. 2015;6 : 10126. doi: 10.1038/ncomms10126 26657541; PubMed Central PMCID: PMC4682117.
37. Lambie EJ, Conradt B. Deadly dowry: how engulfment pathways promote cell killing. Cell Death Differ. 2016;23(4):553–4. doi: 10.1038/cdd.2015.170 26868911; PubMed Central PMCID: PMC4986643.
38. Mishra N, Wei H, Conradt B. Caenorhabditis elegans ced-3 Caspase Is Required for Asymmetric Divisions That Generate Cells Programmed To Die. Genetics. 2018;210(3):983–98. doi: 10.1534/genetics.118.301500 30194072; PubMed Central PMCID: PMC6218217.
39. Zhou Z, Hartwieg E, Horvitz HR. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell. 2001;104(1):43–56. doi: 10.1016/s0092-8674(01)00190-8 11163239
40. Guo S, Kemphues KJ. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature. 1996;382(6590):455–8. doi: 10.1038/382455a0 8684486.
41. Offenburger SL, Bensaddek D, Murillo AB, Lamond AI, Gartner A. Comparative genetic, proteomic and phosphoproteomic analysis of C. elegans embryos with a focus on ham-1/STOX and pig-1/MELK in dopaminergic neuron development. Sci Rep. 2017;7(1):4314. doi: 10.1038/s41598-017-04375-4 28659600; PubMed Central PMCID: PMC5489525.
42. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods. 2013;10(10):1028–34. doi: 10.1038/nmeth.2641 23995389; PubMed Central PMCID: PMC3905680.
43. Chugh P, Paluch EK. The actin cortex at a glance. J Cell Sci. 2018;131(14). doi: 10.1242/jcs.186254 30026344; PubMed Central PMCID: PMC6080608.
44. Hoege C, Hyman AA. Principles of PAR polarity in Caenorhabditis elegans embryos. Nat Rev Mol Cell Biol. 2013;14(5):315–22. doi: 10.1038/nrm3558 23594951.
45. Illukkumbura R, Bland T, Goehring NW. Patterning and polarization of cells by intracellular flows. Curr Opin Cell Biol. 2020;62 : 123–34. doi: 10.1016/j.ceb.2019.10.005 31760155; PubMed Central PMCID: PMC6968950.
46. Rose L, Gonczy P. Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook. 2014 : 1–43. doi: 10.1895/wormbook.1.30.2 25548889.
47. Cheeks RJ, Canman JC, Gabriel WN, Meyer N, Strome S, Goldstein B. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol. 2004;14(10):851–62. doi: 10.1016/j.cub.2004.05.022 15186741.
48. Folkmann AW, Seydoux G. Single-molecule study reveals the frenetic lives of proteins in gradients. Proc Natl Acad Sci U S A. 2018;115(38):9336–8. doi: 10.1073/pnas.1812248115 30181287; PubMed Central PMCID: PMC6156616.
49. Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM, Hyman AA, et al. Polarization of PAR proteins by advective triggering of a pattern-forming system. Science. 2011;334(6059):1137–41. doi: 10.1126/science.1208619 22021673.
50. Munro E, Nance J, Priess JR. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell. 2004;7(3):413–24. doi: 10.1016/j.devcel.2004.08.001 15363415.
51. Peglion F, Goehring NW. Switching states: dynamic remodelling of polarity complexes as a toolkit for cell polarization. Curr Opin Cell Biol. 2019;60 : 121–30. doi: 10.1016/j.ceb.2019.05.002 31295650; PubMed Central PMCID: PMC6906085.
52. Wu Y, Han B, Li Y, Munro E, Odde DJ, Griffin EE. Rapid diffusion-state switching underlies stable cytoplasmic gradients in the Caenorhabditis elegans zygote. Proc Natl Acad Sci U S A. 2018;115(36):E8440–E9. doi: 10.1073/pnas.1722162115 30042214; PubMed Central PMCID: PMC6130366.
53. Loyer N, Januschke J. Where does asymmetry come from? Illustrating principles of polarity and asymmetry establishment in Drosophila neuroblasts. Curr Opin Cell Biol. 2020;62 : 70–7. doi: 10.1016/j.ceb.2019.07.018 31698250.
54. Tsankova A, Pham TT, Garcia DS, Otte F, Cabernard C. Cell Polarity Regulates Biased Myosin Activity and Dynamics during Asymmetric Cell Division via Drosophila Rho Kinase and Protein Kinase N. Dev Cell. 2017;42(2):143–55 e5. doi: 10.1016/j.devcel.2017.06.012 28712722.
55. Cabernard C, Prehoda KE, Doe CQ. A spindle-independent cleavage furrow positioning pathway. Nature. 2010;467(7311):91–4. doi: 10.1038/nature09334 20811457; PubMed Central PMCID: PMC4028831.
56. Connell M, Cabernard C, Ricketson D, Doe CQ, Prehoda KE. Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts. Mol Biol Cell. 2011;22(22):4220–6. doi: 10.1091/mbc.E11-02-0173 21937716; PubMed Central PMCID: PMC3216648.
57. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66. doi: 10.1038/nrm757 11994736.
58. Amoyel M. Gut stem cells, a story of snails, flies and mice. EMBO J. 2015;34(10):1287–9. doi: 10.15252/embj.201591541 25863942; PubMed Central PMCID: PMC4491989.
59. Goossens S, Vandamme N, Van Vlierberghe P, Berx G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 2017;1868(2):584–91. doi: 10.1016/j.bbcan.2017.06.006 28669750.
60. Knoblich JA. Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol. 2010;11(12):849–60. doi: 10.1038/nrm3010 21102610; PubMed Central PMCID: PMC3941022.
61. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94. 4366476
62. Liu J, Maduzia LL, Shirayama M, Mello CC. NMY-2 maintains cellular asymmetry and cell boundaries, and promotes a SRC-dependent asymmetric cell division. Dev Biol. 2010;339(2):366–73. doi: 10.1016/j.ydbio.2009.12.041 20059995; PubMed Central PMCID: PMC2903000.
63. Hedgecock EM, Sulston JE, Thomson JN. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science. 1983;220(4603):1277–9. doi: 10.1126/science.6857247 6857247
64. Consortium CeDM. large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda). 2012;2(11):1415–25. doi: 10.1534/g3.112.003830 23173093; PubMed Central PMCID: PMC3484672.
65. Wueseke O, Zwicker D, Schwager A, Wong YL, Oegema K, Julicher F, et al. Polo-like kinase phosphorylation determines Caenorhabditis elegans centrosome size and density by biasing SPD-5 toward an assembly-competent conformation. Biol Open. 2016;5(10):1431–40. doi: 10.1242/bio.020990 27591191; PubMed Central PMCID: PMC5087692.
66. Shaham S, Reddien PW, Davies B, Horvitz HR. Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3. Genetics. 1999;153(4):1655–71. 10581274
67. Morton DG, Roos JM, Kemphues KJ. par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis. Genetics. 1992;130(4):771–90. 1582558; PubMed Central PMCID: PMC1204928.
68. Audhya A, Hyndman F, McLeod IX, Maddox AS, Yates JR, 3rd, Desai A, et al. A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J Cell Biol. 2005;171(2):267–79. doi: 10.1083/jcb.200506124 16247027.
69. Mello C, Fire A. DNA transformation. Methods Cell Biol. 1995;48 : 451–82. 8531738
70. Frokjaer-Jensen C, Davis MW, Sarov M, Taylor J, Flibotte S, LaBella M, et al. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods. 2014;11(5):529–34. doi: 10.1038/nmeth.2889 24820376; PubMed Central PMCID: PMC4126194.
71. Frokjaer-Jensen C, Davis MW, Ailion M, Jorgensen EM. Improved Mos1-mediated transgenesis in C. elegans. Nat Methods. 2012;9(2):117–8. doi: 10.1038/nmeth.1865 22290181; PubMed Central PMCID: PMC3725292.
72. Boulin T, Bessereau JL. Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat Protoc. 2007;2(5):1276–87. doi: 10.1038/nprot.2007.192 17546024.
73. Schnabel R, Hutter H, Moerman D, Schnabel H. Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev Biol. 1997;184(2):234–65. doi: 10.1006/dbio.1997.8509 9133433
74. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11. Epub 1998/03/05. doi: 10.1038/35888 9486653.
Článek TENET 2.0: Identification of key transcriptional regulators and enhancers in lung adenocarcinomaČlánek Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 9- Pomůže AI k rychlejšímu vývoji antibiotik na kapavku a MRSA?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Může AI vyřešit nedostatek zdravotníků v Evropě?
- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Masturbační chování žen v ČR − dotazníková studie
-
Všechny články tohoto čísla
- Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons
- Coordinate genomic association of transcription factors controlled by an imported quorum sensing peptide in Cryptococcus neoformans
- Using prior information from humans to prioritize genes and gene-associated variants for complex traits in livestock
- The STRIPAK signaling complex regulates dephosphorylation of GUL1, an RNA-binding protein that shuttles on endosomes
- PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning
- Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity
- A mega-analysis of expression quantitative trait loci in retinal tissue
- Genetic analysis of the modern Australian labradoodle dog breed reveals an excess of the poodle genome
- Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II
- Imaginal disc growth factor maintains cuticle structure and controls melanization in the spot pattern formation of Bombyx mori
- The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression
- A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy
- Excess crossovers impede faithful meiotic chromosome segregation in C. elegans
- Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon
- Male-biased aganglionic megacolon in the TashT mouse model of Hirschsprung disease involves upregulation of p53 protein activity and Ddx3y gene expression
- Candidate variants in TUB are associated with familial tremor
- Restriction on self-renewing asymmetric division is coupled to terminal asymmetric division in the Drosophila CNS
- Leveraging correlations between variants in polygenic risk scores to detect heterogeneity in GWAS cohorts
- ZNF423 patient variants, truncations, and in-frame deletions in mice define an allele-dependent range of midline brain abnormalities
- The causal effect of obesity on prediabetes and insulin resistance reveals the important role of adipose tissue in insulin resistance
- Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences
- Deficiency of the Tbc1d21 gene causes male infertility with morphological abnormalities of the sperm mitochondria and flagellum in mice
- TENET 2.0: Identification of key transcriptional regulators and enhancers in lung adenocarcinoma
- Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty
- Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD
- A nonsense variant in Rap Guanine Nucleotide Exchange Factor 5 (RAPGEF5) is associated with equine familial isolated hypoparathyroidism in Thoroughbred foals
- Mutually exclusive dendritic arbors in C. elegans neurons share a common architecture and convergent molecular cues
- Polygenic risk for autism spectrum disorder associates with anger recognition in a neurodevelopment-focused phenome-wide scan of unaffected youths from a population-based cohort
- Aldh inhibitor restores auditory function in a mouse model of human deafness
- AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana
- NFIA differentially controls adipogenic and myogenic gene program through distinct pathways to ensure brown and beige adipocyte differentiation
- Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase
- Snf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response
- Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon
- Correction: Systems genomics approaches provide new insights into Arabidopsis thaliana root growth regulation under combinatorial mineral nutrient limitation
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon
- Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons
- Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II
- Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Autoři: prof. MUDr. Hana Rosolová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání