Androgens regulate ovarian gene expression by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics

Autoři: Sambit Roy aff001;  Binbin Huang aff002;  Niharika Sinha aff001;  Jianrong Wang aff002;  Aritro Sen aff001
Působiště autorů: Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America aff001;  Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America aff002
Vyšlo v časopise: Androgens regulate ovarian gene expression by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics. PLoS Genet 17(3): e1009483. doi:10.1371/journal.pgen.1009483
Kategorie: Research Article


Conventionally viewed as male hormone, androgens play a critical role in female fertility. Although androgen receptors (AR) are transcription factors, to date very few direct transcriptional targets of ARs have been identified in the ovary. Using mouse models, this study provides three critical insights about androgen-induced gene regulation in the ovary and its impact on female fertility. First, RNA-sequencing reveals a number of genes and biological processes that were previously not known to be directly regulated by androgens in the ovary. Second, androgens can also influence gene expression by decreasing the tri-methyl mark on lysine 27 of histone3 (H3K27me3), a gene silencing epigenetic mark. ChIP-seq analyses highlight that androgen-induced modulation of H3K27me3 mark within gene bodies, promoters or distal enhancers have a much broader impact on ovarian function than the direct genomic effects of androgens. Third, androgen-induced decrease of H3K27me3 is mediated through (a) inhibiting the expression and activity of Enhancer of Zeste Homologue 2 (EZH2), a histone methyltransferase that promotes tri-methylation of K27 and (b) by inducing the expression of a histone demethylase called Jumonji domain containing protein-3 (JMJD3/KDM6B), responsible for removing the H3K27me3 mark. Androgens through the PI3K/Akt pathway, in a transcription-independent fashion, increase hypoxia-inducible factor 1 alpha (HIF1α) protein levels, which in turn induce JMJD3 expression. Furthermore, proof of concept studies involving in vivo knockdown of Ar in the ovary and ovarian (granulosa) cell-specific Ar knockout mouse model show that ARs regulate the expression of key ovarian genes through modulation of H3K27me3.

Klíčová slova:

Androgens – Gene expression – Gene regulation – Ovaries – Polycystic ovary syndrome – Promoter regions – Small interfering RNA – Transcription factors


1. Walters KA. Role of androgens in normal and pathological ovarian function. Reproduction 2015; 149(4):R193–218. doi: 10.1530/REP-14-0517 25516989

2. Walters KA, Simanainen U, Gibson DA. Androgen action in female reproductive physiology. Curr Opin Endocrinol Diabetes Obes. 2016; 23(3):291–296. doi: 10.1097/MED.0000000000000246 26863277

3. Walters KA, Simanainen U, Handelsman DJ. Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update. 2010; 16(5):543–558. doi: 10.1093/humupd/dmq003 20231167

4. Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: balance is key. J Endocrinol. 2014; 222(3):R141–151. doi: 10.1530/JOE-14-0296 25037707

5. Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee HJ, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci USA. 2014; 111(8):3008–3013. doi: 10.1073/pnas.1318978111 24516121

6. Franks S, Hardy K. Androgen Action in the Ovary. Front Endocrinol (Lausanne). 2018; 9:452. doi: 10.3389/fendo.2018.00452 30147675

7. Stener-Victorin E, Padmanabhan V, Walters KA, E Campbell RE, Benrick A, Giacobini P, et al. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr Rev. 2020; 41(4):538–76. doi: 10.1210/endrev/bnaa010 32310267

8. Walters KA. Androgens in polycystic ovary syndrome: lessons from experimental models. Curr Opin Endocrinol Diabetes Obes. 2016; 23(3):257–263. doi: 10.1097/MED.0000000000000245 26866639

9. Walters KA, Bertoldo MJ, Handelsman DJ. Evidence from animal models on the pathogenesis of PCOS. Best Pract Res Clin Endocrinol Metab. 2018; 32(3):271–281. doi: 10.1016/j.beem.2018.03.008 29779581

10. Walters KA, Rodriguez Paris V, Aflatounian A, Handelsman DJ. Androgens and ovarian function: translation from basic discovery research to clinical impact. J Endocrinol. 2019; 242(2):R23–R50. doi: 10.1530/JOE-19-0096 31125975

11. Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, et al. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci USA. 2004; 101(31):11209–11214. doi: 10.1073/pnas.0404372101 15277682

12. Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci USA. 2006; 103(1):224–229. doi: 10.1073/pnas.0506736102 16373508

13. Walters KA, Allan CM, Jimenez M, Lim PR, Davey RA, Zajac JD, et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology. 2007; 148(8):3674–3684. doi: 10.1210/en.2007-0248 17463055

14. Walters KA, Middleton LJ, Joseph SR, Hazra R, Jimenez M, Simanainen U, et al. Targeted loss of androgen receptor signaling in murine granulosa cells of preantral and antral follicles causes female subfertility. Biol Reprod. 2012; 87(6):151. doi: 10.1095/biolreprod.112.102012 23115271

15. Sen A, Hammes SR. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol Endocrinol. 2010; 24(7):1393–1403. doi: 10.1210/me.2010-0006 20501640

16. Ma Y, Andrisse S, Chen Y, Childress S, Xue P, Wang Z, et al. Androgen Receptor in the Ovary Theca Cells Plays a Critical Role in Androgen-Induced Reproductive Dysfunction. Endocrinology. 2017; 158(1):98–108. doi: 10.1210/en.2016-1608 27841936

17. Wu S, Chen Y, Fajobi T, DiVall SA, Chang C, Yeh S, et al. Conditional knockout of the androgen receptor in gonadotropes reveals crucial roles for androgen in gonadotropin synthesis and surge in female mice. Mol Endocrinol. 2014; 28(10):1670–1681. doi: 10.1210/me.2014-1154 25157703

18. Caldwell ASL, Edwards MC, Desai R, Jimenez M, Gilchrist RB, Handelsman DJ, et al. Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. Proc Natl Acad Sci USA. 2017; 114(16):E3334–E3343. doi: 10.1073/pnas.1616467114 28320971

19. Laird M, Thomson K, Fenwick M, Mora J, Franks S, Hardy K. Androgen Stimulates Growth of Mouse Preantral Follicles In Vitro: Interaction With Follicle-Stimulating Hormone and With Growth Factors of the TGFbeta Superfamily. Endocrinology. 2017; 158(4):920–935. doi: 10.1210/en.2016-1538 28324051

20. Wang H, Andoh K, Hagiwara H, Xiaowei L, Kikuchi N, Abe Y et al. Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology. 2001; 142(11):4930–4936. doi: 10.1210/endo.142.11.8482 11606461

21. Hickey TE, Marrocco DL, Amato F, Ritter LJ, Norman RJ, Gilchrist RB, et al. Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells. Biol Reprod. 2005; 73(4):825–832. doi: 10.1095/biolreprod.104.039362 15972887

22. Hickey TE, Marrocco DL, Gilchrist RB, Norman RJ, Armstrong DT. Interactions between androgen and growth factors in granulosa cell subtypes of porcine antral follicles. Biol Reprod. 2004. 71(1):45–52. doi: 10.1095/biolreprod.103.026484 14973257

23. Murray AA, Gosden RG, Allison V, Spears N. Effect of androgens on the development of mouse follicles growing in vitro. J Reprod Fertil. 1998; 113(1):27–33. doi: 10.1530/jrf.0.1130027 9713373

24. Casson PR, Lindsay MS, Pisarska MD, Carson SA, Buster JE. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Hum Reprod. 2000; 15(10):2129–2132. doi: 10.1093/humrep/15.10.2129 11006185

25. Barad D, Gleicher N. Effect of dehydroepiandrosterone on oocyte and embryo yields, embryo grade and cell number in IVF. Hum Reprod. 2006; 21(11):2845–2849. doi: 10.1093/humrep/del254 16997936

26. Barad DH, Gleicher N. Increased oocyte production after treatment with dehydroepiandrosterone. Fertil Steril. 2005; 84(3):756. doi: 10.1016/j.fertnstert.2005.02.049 16169414

27. Mamas L, Mamas E. Premature ovarian failure and dehydroepiandrosterone. Fertil Steril. 2009; 91(2):644–646. doi: 10.1016/j.fertnstert.2007.11.055 18321501

28. Hyman JH, Margalioth EJ, Rabinowitz R, Tsafrir A, Gal M, Alerhand S, et al. DHEA supplementation may improve IVF outcome in poor responders: a proposed mechanism. Eur J Obstet Gynecol Reprod Biol. 2013; 168(1):49–53. doi: 10.1016/j.ejogrb.2012.12.017 23312476

29. Sönmezer M, Ozmen B, Cil AP, Ozkavukçu S, Taşçi T, Olmuş H, et al. Dehydroepiandrosterone supplementation improves ovarian response and cycle outcome in poor responders. Reprod Biomed Online. 2009; 19(4):508–513. doi: 10.1016/j.rbmo.2009.06.006 19909591

30. Sunkara SK, Coomarasamy A. Androgen pretreatment in poor responders undergoing controlled ovarian stimulation and in vitro fertilization treatment. Fertil Steril. 2011; 95(8):e73–74. doi: 10.1016/j.fertnstert.2011.04.083 21601849

31. Gonzalez-Comadran M, Durán M, Solà I, Fábregues F, Carreras R, Checa MA, et al. Effects of transdermal testosterone in poor responders undergoing IVF: systematic review and meta-analysis. Reprod Biomed Online. 2012; 25(5):450–459. doi: 10.1016/j.rbmo.2012.07.011 22999555

32. Davison SL, Davis SR. Androgens in women. J Steroid Biochem Mol Biol. 2003; 85(2–5):363–366. doi: 10.1016/s0960-0760(03)00204-8 12943723

33. Burger HG. Androgen production in women. Fertil Steril. 2002; 77 Suppl 4:S3–5. doi: 10.1016/s0015-0282(02)02985-0 12007895

34. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. 2011; 32(1):81–151. doi: 10.1210/er.2010-0013 21051590

35. Ghayee HK, Auchus RJ. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord. 2007; 8(4):289–300. doi: 10.1007/s11154-007-9052-2 17926129

36. Jakimiuk AJ, Weitsman SR, Magoffin DA. 5alpha-reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1999; 84(7):2414–2418. doi: 10.1210/jcem.84.7.5863 10404813

37. Kayampilly PP, Wanamaker BL, Stewart JA, Wagner CL, Menon KM. Stimulatory effect of insulin on 5alpha-reductase type 1 (SRD5A1) expression through an Akt-dependent pathway in ovarian granulosa cells. Endocrinology. 2010; 151(10):5030–5037. doi: 10.1210/en.2010-0444 20810561

38. Ma X, Hayes E, Biswas A, Seger C, Prizant H, Hammes SR, et al. Androgens Regulate Ovarian Gene Expression Through Modulation of Ezh2 Expression and Activity. 2017; 158(9):2944–2954. doi: 10.1210/en.2017-00145 28666321

39. Xue K, Liu JY, Murphy BD, Tsang BK. Orphan nuclear receptor NR4A1 is a negative regulator of DHT-induced rat preantral follicular growth. Mol Endocrinol. 2012. 26(12):2004–2015. doi: 10.1210/me.2012-1200 23028064

40. Hammes SR, Levin ER. Minireview: Recent advances in extranuclear steroid receptor actions. Endocrinology. 2011. 152(12):4489–4495. doi: 10.1210/en.2011-1470 22028449

41. Hammes SR, Levin ER. Extranuclear steroid receptors: nature and actions. Endocr Rev. 2007. 28(7):726–741. doi: 10.1210/er.2007-0022 17916740

42. Levin ER, Hammes SR. Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. Nat Rev Mol Cell Biol. 2016; 17(12):783–797. doi: 10.1038/nrm.2016.122 27729652

43. Sen A, De Castro I, Defranco DB, Deng FM, Melamed J, Kapur P, et al. Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J Clin Invest. 2012; 122(7):2469–2481. doi: 10.1172/JCI62044 22684108

44. Sen A, O’Malley K, Wang Z, Raj GV, Defranco DB, Hammes SR, et al. Paxillin regulates androgen- and epidermal growth factor-induced MAPK signaling and cell proliferation in prostate cancer cells. J Biol Chem. 2010; 285(37):28787–28795. doi: 10.1074/jbc.M110.134064 20628053

45. Sen A, Prizant H, Hammes SR. Understanding extranuclear (nongenomic) androgen signaling: what a frog oocyte can tell us about human biology. Steroids. 2011; 76(9):822–828. doi: 10.1016/j.steroids.2011.02.016 21354434

46. Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006; 439(7078):871–874. doi: 10.1038/nature04431 16357870

47. Blum R. Stepping inside the realm of epigenetic modifiers. Biomol Concepts. 2015; 6(2):119–136. doi: 10.1515/bmc-2015-0008 25915083

48. Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017; 49(4):e324. doi: 10.1038/emm.2017.11 28450737

49. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014; 515(7527):355–364. doi: 10.1038/nature13992 25409824

50. Lee HY, Choi K, Oh H, Park YK, Park H. HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions. Mol Cells. 2014; 37(1):43–50. doi: 10.14348/molcells.2014.2250 24552709

51. Mabjeesh NJ, Willard MT, Frederickson CE, Zhong H, Simons JW. Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3’-kinase/protein kinase B in prostate cancer cells. Clin Cancer Res. 2003; 9(7):2416–2425. 12855613

52. Nilsson EE, Skinner MK. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod. 2003; 69(4):1265–1272. doi: 10.1095/biolreprod.103.018671 12801979

53. Narayan P. Genetic Models for the Study of Luteinizing Hormone Receptor Function. Front Endocrinol (Lausanne). 2015; 6:152.

54. Richards JS, Hernandez-Gonzalez I, Gonzalez-Robayna I, Teuling E, Lo Y, Boerboom D, et al. Regulated expression of ADAMTS family members in follicles and cumulus oocyte complexes: evidence for specific and redundant patterns during ovulation. Biol Reprod. 2005; 72(5):1241–1255. doi: 10.1095/biolreprod.104.038083 15659705

55. Light A, Hammes SR. LH-Induced Steroidogenesis in the Mouse Ovary, but Not Testis, Requires Matrix Metalloproteinase 2- and 9-Mediated Cleavage of Upregulated EGF Receptor Ligands. Biol Reprod. 2015; 93(3):65. doi: 10.1095/biolreprod.115.130971 26203177

56. Carbajal L, Biswas A, Niswander LM, Prizant H, Hammes SR. GPCR/EGFR cross talk is conserved in gonadal and adrenal steroidogenesis but is uniquely regulated by matrix metalloproteinases 2 and 9 in the ovary. Mol Endocrinol. 2011; 25(6):1055–1065. doi: 10.1210/me.2010-0410 21454403

57. Jamnongjit M, Gill A, Hammes SR. Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc Natl Acad Sci USA. 2005; 102(45):16257–16262. doi: 10.1073/pnas.0508521102 16260720

58. Abramovich D, Rodriguez Celin A, Hernandez F, Tesone M, Parborell F. Spatiotemporal analysis of the protein expression of angiogenic factors and their related receptors during folliculogenesis in rats with and without hormonal treatment. Reproduction. 2009; 137(2):309–320. doi: 10.1530/REP-08-0130 18996974

59. Robinson RS, Woad KJ, Hammond AJ, Laird M, Hunter MG, Mann GE. Angiogenesis and vascular function in the ovary. Reproduction. 2009; 138(6):869–881. doi: 10.1530/REP-09-0283 19786399

60. Parborell F, Abramovich D, Tesone M. Intrabursal administration of the antiangiopoietin 1 antibody produces a delay in rat follicular development associated with an increase in ovarian apoptosis mediated by changes in the expression of BCL2 related genes. Biol Reprod. 2008; 78(3):506–513. doi: 10.1095/biolreprod.107.063610 17989359

61. Hayashi KG, Acosta TJ, Tetsuka M, Berisha B, Matsui M, Schams D, et al. Involvement of angiopoietin-tie system in bovine follicular development and atresia: messenger RNA expression in theca interna and effect on steroid secretion. Biol Reprod. 2003; 69(6):2078–2084. doi: 10.1095/biolreprod.103.017152 12954734

62. Wulff C, Wilson H, Largue P, Duncan WC, Armstrong DG, Fraser HM. Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, tie-2, and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab. 2000; 85(11):4302–4309. doi: 10.1210/jcem.85.11.6942 11095472

63. Xu F, Stouffer RL. Local delivery of angiopoietin-2 into the preovulatory follicle terminates the menstrual cycle in rhesus monkeys. Biol Reprod. 2005. 72(6):1352–1358. doi: 10.1095/biolreprod.104.037143 15703373

64. Hanahan D. Signaling vascular morphogenesis and maintenance. Science. 1997. 277(5322):48–50. doi: 10.1126/science.277.5322.48 9229772

65. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997. 277(5322):55–60. doi: 10.1126/science.277.5322.55 9204896

66. Chang XL, Liu L, Wang N, Chen ZJ, Zhang C. The function of high-density lipoprotein and low-density lipoprotein in the maintenance of mouse ovarian steroid balance. Biol Reprod. 2017; 97(6):862–872. doi: 10.1093/biolre/iox134 29092018

67. Huang Q, Liu Y, Yang Z, Xie Y, Mo Z. The Effects of Cholesterol Metabolism on Follicular Development and Ovarian Function. Curr Mol Med. 2019; 19(10):719–730. doi: 10.2174/1566524019666190916155004 31526349

68. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018; 16(1):80. doi: 10.1186/s12958-018-0391-5 30126412

69. Kanamarlapudi V, Gordon UD, Lopez Bernal A. Luteinizing hormone/chorionic gonadotrophin receptor overexpressed in granulosa cells from polycystic ovary syndrome ovaries is functionally active. Reprod Biomed Online. 2016; 32(6):635–641. doi: 10.1016/j.rbmo.2016.03.003 27061682

70. Scotti L, Parborell F, Irusta G, De Zuñiga I, Bisioli C, Pettorossi H, et al. Platelet-derived growth factor BB and DD and angiopoietin1 are altered in follicular fluid from polycystic ovary syndrome patients. Mol Reprod Dev. 2014; 81(8):748–756. doi: 10.1002/mrd.22343 24889290

71. Lewandowski KC, Komorowski J, O’Callaghan CJ, Tan BK, Chen J, Prelevic GM, et al. Increased circulating levels of matrix metalloproteinase-2 and -9 in women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 2006; 91(3):1173–1177. doi: 10.1210/jc.2005-0648 16338908

72. Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest. 1998; 101(12):2622–2629. doi: 10.1172/JCI2081 9637695

73. Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab. 1999 84(8):2951–2956. doi: 10.1210/jcem.84.8.5929 10443703

74. Weil SJ, Vendola K, Zhou J, Adesanya OO, Wang J, Okafor J, et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab. 1998; 83(7):2479–2485. doi: 10.1210/jcem.83.7.4917 9661631

75. Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary. Biol Reprod. 1999; 61(2):353–357. doi: 10.1095/biolreprod61.2.353 10411511

76. Fitzpatrick SL, Richards JS. Regulation of cytochrome P450 aromatase messenger ribonucleic acid and activity by steroids and gonadotropins in rat granulosa cells. Endocrinology. 1991; 129(3):1452–1462. doi: 10.1210/endo-129-3-1452 1651851

77. Tetsuka M, Hillier SG. Differential regulation of aromatase and androgen receptor in granulosa cells. J Steroid Biochem Mol Biol. 1997; 61(3–6):233–239. 9365195

78. Owens LA, Kristensen SG, Lerner A, Christopoulos G, Lavery S, Hanyaloglu AC, et al. Gene Expression in Granulosa Cells From Small Antral Follicles From Women With or Without Polycystic Ovaries. J Clin Endocrinol Metab. 2019; 104(12):6182–6192. doi: 10.1210/jc.2019-00780 31276164

79. Ambekar AS, Kelkar DS, Pinto SM, Sharma R, Hinduja I, Zaveri K, et al. Proteomics of follicular fluid from women with polycystic ovary syndrome suggests molecular defects in follicular development. J Clin Endocrinol Metab. 2015; 100(2):744–753. doi: 10.1210/jc.2014-2086 25393639

80. Salehi E, Aflatoonian R, Moeini A, Yamini N, Asadi E, Khosravizadeh Z, et al. Apoptotic biomarkers in cumulus cells in relation to embryo quality in polycystic ovary syndrome. Arch Gynecol Obstet. 2017; 296(6):1219–1227. doi: 10.1007/s00404-017-4523-5 28988321

81. Peng Y, Zhang W, Yang P, Tian Y, Su S, Zhang C, et al. ERBB4 Confers Risk for Polycystic Ovary Syndrome in Han Chinese. Sci Rep. 2017 7:42000. doi: 10.1038/srep42000 28195137

82. Li L, Lee KJ, Choi BC, Baek KH. Relationship between leptin receptor and polycystic ovary syndrome. Gene. 2013; 527(1):71–74. doi: 10.1016/j.gene.2013.05.074 23769971

83. Zhang ZH, Chen LY, Wang F, Wu YQ, Su JQ, Huang XH, et al. Expression of hypoxia-inducible factor-1alpha during ovarian follicular growth and development in Sprague-Dawley rats. Genet Mol Res. 2015; 14(2):5896–5909. doi: 10.4238/2015.June.1.7 26125789

84. Kim J, Bagchi IC, Bagchi MK. Signaling by hypoxia-inducible factors is critical for ovulation in mice. Endocrinology. 2009; 150(7):3392–3400. doi: 10.1210/en.2008-0948 19325003

85. Lenie S, Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol Reprod. 2009; 80(4):685–695. doi: 10.1095/biolreprod.107.067280 19074005

86. Wang J, Fu X, Yang K, Jiang Q, Chen Y, Jia J, et al. Hypoxia inducible factor-1-dependent up-regulation of BMP4 mediates hypoxia-induced increase of TRPC expression in PASMCs. Cardiovasc Res. 2015. 107(1):108–118. doi: 10.1093/cvr/cvv122 25824146

87. Wu DC, Paulson RF. Hypoxia regulates BMP4 expression in the murine spleen during the recovery from acute anemia. PLoS One. 2010; 5(6):e11303. doi: 10.1371/journal.pone.0011303 20585586

88. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014; 49(1):1–15. doi: 10.3109/10409238.2013.838205 24099156

89. Wan R, Mo Y, Chien S, Li Y, Li Y, Tollerud DJ, et al. The role of hypoxia inducible factor-1alpha in the increased MMP-2 and MMP-9 production by human monocytes exposed to nickel nanoparticles. Nanotoxicology. 2011; 5(4):568–582. doi: 10.3109/17435390.2010.537791 21401309

90. Tsai SH, Huang PH, Hsu YJ, Peng YJ, Lee CH, Wang JC, et al. Inhibition of hypoxia inducible factor-1alpha attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 2016; 6:28612. doi: 10.1038/srep28612 27363580

91. Zhu G, Wang S, Chen J, Wang Z, Liang X, Wang X, et al. Long noncoding RNA HAS2-AS1 mediates hypoxia-induced invasiveness of oral squamous cell carcinoma. Mol Carcinog. 2017; 56(10):2210–2222. doi: 10.1002/mc.22674 28485478

92. Ding Z, Wang X, Liu S, Shahanawaz J, Theus S, Fan Y, et al. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res. 2018; 114(13):1738–1751. doi: 10.1093/cvr/cvy128 29800228

93. Oikawa M, Abe M, Kurosawa H, Hida W, Shirato K, Sato Y. Hypoxia induces transcription factor ETS-1 via the activity of hypoxia-inducible factor-1. Biochem Biophys Res Commun. 2001; 289(1):39–43. doi: 10.1006/bbrc.2001.5927 11708773

94. Qiao N, Xu C, Zhu YX, Cao Y, Liu DC, Han X. Ets-1 as an early response gene against hypoxia-induced apoptosis in pancreatic beta-cells. Cell Death Dis. 2015; 6:e1650. doi: 10.1038/cddis.2015.8 25695603

95. Wan J, Ma J, Mei J, Shan G. The effects of HIF-1alpha on gene expression profiles of NCI-H446 human small cell lung cancer cells. 2009; J Exp Clin Cancer Res 28:150. doi: 10.1186/1756-9966-28-150 20003295

96. Horii K, Suzuki Y, Kondo Y, Akimoto M, Nishimura T, Yamabe Y, et al. Androgen-dependent gene expression of prostate-specific antigen is enhanced synergistically by hypoxia in human prostate cancer cells. Mol Cancer Res. 2007; 5(4):383–391. doi: 10.1158/1541-7786.MCR-06-0226 17426252

97. Katoh N, Kuroda K, Tomikawa J, Ogata-Kawata H, Ozaki R, Ochiai A, et al. Reciprocal changes of H3K27ac and H3K27me3 at the promoter regions of the critical genes for endometrial decidualization. Epigenomics. 2018; 10(9):1243–1257. doi: 10.2217/epi-2018-0006 30212243

98. Sinha N, Biswas A, Nave O, Seger C, Sen A. Gestational Diabetes Epigenetically Reprograms the Cart Promoter in Fetal Ovary, Causing Subfertility in Adult Life. Endocrinology. 2019; 160(7):1684–1700. doi: 10.1210/en.2019-00319 31150057

99. Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, et al. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res. 2010; 38(15):4958–4969. doi: 10.1093/nar/gkq244 20385584

100. Xiong Y, Khanna S, Grzenda AL, Sarmento OF, Svingen PA, Lomberk GA, et al. Polycomb antagonizes p300/CREB-binding protein-associated factor to silence FOXP3 in a Kruppel-like factor-dependent manner. J Biol Chem. 2012; 287(41):34372–34385. doi: 10.1074/jbc.M111.325332 22896699

101. Ma X, Hayes E, Prizant H, Srivastava RK, Hammes SR, Sen A. Leptin-induced CART (Cocaine-and Amphetamine-Regulated Transcript) is a novel intra-ovarian mediator of obesity-related infertility in females. Endocrinology. 2016; en20151750.

102. Hayes E, Kushnir V, Ma X, Biswas A, Prizant H, Gleicher N, et al. Intra-cellular mechanism of Anti-Mullerian hormone (AMH) in regulation of follicular development. Mol Cell Endocrinol. 2016; 433:56–65. doi: 10.1016/j.mce.2016.05.019 27235859

103. Roy S, Gandra D, Seger C, Biswas A, Kushnir VA, Gleicher N, et al. Oocyte-Derived Factors (GDF9 and BMP15) and FSH Regulate AMH Expression Via Modulation of H3K27AC in Granulosa Cells. Endocrinology. 2018; 159(9):3433–3445. doi: 10.1210/en.2018-00609 30060157

104. Sinha N, Roy S, Huang B, Wang J, Padmanabhan V, Sen A. Developmental Programming: Prenatal Testosterone-induced Epigenetic Modulation and its Effect on Gene Expression in Sheep Ovary. Biol Reprod. 2020; 102(5):1045–1054. doi: 10.1093/biolre/ioaa007 31930385

Článek vyšel v časopise

PLOS Genetics

2021 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Důležitost adherence při depresivním onemocnění
nový kurz
Autoři: MUDr. Eliška Bartečková, Ph.D.

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková, Ph.D.

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Všechny kurzy
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se