Characterization of Parkinson’s disease using blood-based biomarkers: A multicohort proteomic analysis

Autoři: Marijan Posavi aff001;  Maria Diaz-Ortiz aff001;  Benjamine Liu aff001;  Christine R. Swanson aff001;  R. Tyler Skrinak aff001;  Pilar Hernandez-Con aff001;  Defne A. Amado aff001;  Michelle Fullard aff001;  Jacqueline Rick aff001;  Andrew Siderowf aff001;  Daniel Weintraub aff003;  Leo McCluskey aff001;  John Q. Trojanowski aff004;  Richard B. Dewey, Jr aff005;  Xuemei Huang aff006;  Alice S. Chen-Plotkin aff001
Působiště autorů: Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America aff001;  National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America aff002;  Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America aff003;  Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America aff004;  Department of Neurology and Neurotherapeutics, Clinical Center for Movement Disorders at the University of Texas Southwestern Medical Center, Dallas, Texas, United States of America aff005;  Department of Neurology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America aff006
Vyšlo v časopise: Characterization of Parkinson’s disease using blood-based biomarkers: A multicohort proteomic analysis. PLoS Med 16(10): e1002931. doi:10.1371/journal.pmed.1002931
Kategorie: Research Article
doi: 10.1371/journal.pmed.1002931



Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting about 5 million people worldwide with no disease-modifying therapies. We sought blood-based biomarkers in order to provide molecular characterization of individuals with PD for diagnostic confirmation and prediction of progression.

Methods and findings

In 141 plasma samples (96 PD, 45 neurologically normal control [NC] individuals; 45.4% female, mean age 70.0 years) from a longitudinally followed Discovery Cohort based at the University of Pennsylvania (UPenn), we measured levels of 1,129 proteins using an aptamer-based platform. We modeled protein plasma concentration (log10 of relative fluorescence units [RFUs]) as the effect of treatment group (PD versus NC), age at plasma collection, sex, and the levodopa equivalent daily dose (LEDD), deriving first-pass candidate protein biomarkers based on p-value for PD versus NC. These candidate proteins were then ranked by Stability Selection. We confirmed findings from our Discovery Cohort in a Replication Cohort of 317 individuals (215 PD, 102 NC; 47.9% female, mean age 66.7 years) from the multisite, longitudinally followed National Institute of Neurological Disorders and Stroke Parkinson’s Disease Biomarker Program (PDBP) Cohort. Analytical approach in the Replication Cohort mirrored the approach in the Discovery Cohort: each protein plasma concentration (log10 of RFU) was modeled as the effect of group (PD versus NC), age at plasma collection, sex, clinical site, and batch. Of the top 10 proteins from the Discovery Cohort ranked by Stability Selection, four associations were replicated in the Replication Cohort. These blood-based biomarkers were bone sialoprotein (BSP, Discovery false discovery rate [FDR]-corrected p = 2.82 × 10−2, Replication FDR-corrected p = 1.03 × 10−4), osteomodulin (OMD, Discovery FDR-corrected p = 2.14 × 10−2, Replication FDR-corrected p = 9.14 × 10−5), aminoacylase-1 (ACY1, Discovery FDR-corrected p = 1.86 × 10−3, Replication FDR-corrected p = 2.18 × 10−2), and growth hormone receptor (GHR, Discovery FDR-corrected p = 3.49 × 10−4, Replication FDR-corrected p = 2.97 × 10−3). Measures of these proteins were not significantly affected by differences in sample handling, and they did not change comparing plasma samples from 10 PD participants sampled both on versus off dopaminergic medication. Plasma measures of OMD, ACY1, and GHR differed in PD versus NC but did not differ between individuals with amyotrophic lateral sclerosis (ALS, n = 59) versus NC. In the Discovery Cohort, individuals with baseline levels of GHR and ACY1 in the lowest tertile were more likely to progress to mild cognitive impairment (MCI) or dementia in Cox proportional hazards analyses adjusting for age, sex, and disease duration (hazard ratio [HR] 2.27 [95% CI 1.04–5.0, p = 0.04] for GHR, and HR 3.0 [95% CI 1.24–7.0, p = 0.014] for ACY1). GHR’s association with cognitive decline was confirmed in the Replication Cohort (HR 3.6 [95% CI 1.20–11.1, p = 0.02]). The main limitations of this study were its reliance on the aptamer-based platform for protein measurement and limited follow-up time available for some cohorts.


In this study, we found that the blood-based biomarkers BSP, OMD, ACY1, and GHR robustly associated with PD across multiple clinical sites. Our findings suggest that biomarkers based on a peripheral blood sample may be developed for both disease characterization and prediction of future disease progression in PD.

Klíčová slova:

Biomarkers – Blood plasma – Cognitive impairment – Dementia – Dopaminergics – Parkinson disease – Plasma proteins – Amyotrophic lateral sclerosis


1. Hughes AJ, Daniel SE, Blankson S, Lees AJ. A Clinicopathologic Study of 100 Cases of Parkinson’s Disease. Arch Neurol. 1993;50(2):140–8. doi: 10.1001/archneur.1993.00540020018011 8431132

2. Fearnley JM, Lees AJ. Ageing and Parkinson’s Disease: Substantia Nigra Regional Selectivity. Brain. 1991;114(5):2283–301.

3. Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson disease. Neurology. 2005;64(2):208–15.

4. Tropea TF, Chen-Plotkin AS. Unlocking the mystery of biomarkers: A brief introduction, challenges and opportunities in Parkinson Disease. Park Relat Disord. 2018;46(Suppl 1):S15–8.

5. Lewczuk P, Riederer P, O’Bryant SE, Verbeek MM, Dubois B, Visser PJ, et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry. 2018;19:244–328. doi: 10.1080/15622975.2017.1375556 29076399

6. Chen-Plotkin AS. Unbiased approaches to biomarker discovery in neurodegenerative diseases. Neuron. 2014;84(3):594–607. doi: 10.1016/j.neuron.2014.10.031 25442938

7. Chen-Plotkin AS, Albin R, Alcalay R, Babcock D, Bajaj V, Bowman D, et al. Finding useful biomarkers for Parkinson’s disease. Sci Transl Med. 2018;10(454):eaam6003. doi: 10.1126/scitranslmed.aam6003 30111645

8. Kang J-H, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS, et al. Association of Cerebrospinal Fluid β-Amyloid 1–42, T-tau, P-tau 181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease. JAMA Neurol. 2013;70(10):1277–87. doi: 10.1001/jamaneurol.2013.3861 23979011

9. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN et al. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. PLoS ONE. 2010;5(12):e15004. doi: 10.1371/journal.pone.0015004 21165148

10. R Core Team. A language and environment for statistical computing, R Foundation for Statistical Computing [Internet]. 2016. p. 1. [cited 2018 Jul 15].

11. Tropea TF, Xie SX, Rick J, Chahine LM, Dahodwala N, Doshi J, et al. APOE, thought disorder, and SPARE-AD predict cognitive decline in established Parkinson’s disease. Mov Disord. 2018;33(2):289–97. doi: 10.1002/mds.27204 29168904

12. Chen-Plotkin AS, Hu WT, Siderowf A, Weintraub D, Gross G, Hurtig HI, et al. Plasma EGF levels predict cognitive decline in Parkinson’s disease. 2011;69(4):655–63.

13. Rosenthal LS, Drake D, Alcalay RN, Babcock D, Bowman FD, Chen-Plotkin A, et al. The NINDS Parkinson’s disease biomarkers program. Mov Disord. 2016;31(6):915–23. doi: 10.1002/mds.26438 26442452

14. Kang UJ, Goldman JG, Alcalay RN, Xie T, Tuite P, Henchcliffe C, et al. The BioFIND study: Characteristics of a clinically typical Parkinson’s disease biomarker cohort. Mov Disord. 2016;31(6):924–32. doi: 10.1002/mds.26613 27113479

15. Davies DR, Gelinas AD, Zhang C, Rohloff JC, Carter JD, O’Connell D, et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc Natl Acad Sci U S A. 2012;109(49):19971–6. doi: 10.1073/pnas.1213933109 23139410

16. Dewey TM, Zyzniewski MC, Mundt AA, Crouch GJ, Eaton BE. New Uridine Derivatives for Systematic Evolution of RNA Ligands by Exponential Enrichment. J Am Chem Soc. 1995;117(32):8474–5.

17. Kraemer S, Vaught JD, Bock C, Gold L, Katilius E, Keeney TR, et al. From SOMAmer-based biomarker discovery to diagnostic and clinical applications: A SOMAmer-based, streamlined multiplex proteomic assay. PLoS ONE. 2011;6(10):e26332. doi: 10.1371/journal.pone.0026332 22022604

18. Lollo B, Steele F, Gold L. Beyond antibodies: New affinity reagents to unlock the proteome. Proteomics. 2014;14(6):638–44. doi: 10.1002/pmic.201300187 24395722

19. SomaLogic. SOMAscan Proteomic Assay Technical White Paper. 2015;1–14.

20. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289–300.

21. Warnes, RG, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A et al. gplots: Various R Programming Tools for Plotting Data [Internet]. 2016. [cited 2018 Jul 14].

22. Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Ser B Stat Methodol. 2010;72(4):417–73.

23. Tibshirani R. Regression shrinkage and selection via the lasso: A retrospective. J R Stat Soc Ser B Stat Methodol. 2011;73(3):273–82.

24. Wehrens R, Franceschi P. Meta-Statistics for Variable Selection: The R Package BioMark. J Stat Softw. 2012;51(10):1–18.

25. Pinheiro J, Bates D, DebRoy S. SD and RCT. _nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1–137. 2018. [cited 2018 Oct 14].

26. Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, et al. The MoCA. Neurology. 2010;75(19):1717–1725. doi: 10.1212/WNL.0b013e3181fc29c9 21060094

27. Therneau T. A Package for Survival Analysis in S. version 2.38. 2015. [cited 2018 Oct 14].

28. Kassambara A. survminer: Drawing Survival Curves using “ggplot2”. R package version 0.4.2. 2018. [cited 2018 Sep 16].

29. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25(15):2649–53. doi: 10.1002/mds.23429 21069833

30. Reid WGJ, Hely MA, Morris JGL, Loy C, Halliday GM. Dementia in Parkinson’s disease: A 20-year neuropsychological study (Sydney multicentre study). J Neurol Neurosurg Psychiatry. 2011;82(9):1033–7. doi: 10.1136/jnnp.2010.232678 21335570

31. Llebaria G, Pagonabarraga J, Kulisevsky J, García-Sánchez C, Pascual-Sedano B, Gironell A et al. Cut-off score of the Mattis Dementia Rating Scale for screening dementia in Parkinson’s disease. Mov Disord. 2008;23(11):1546–50. doi: 10.1002/mds.22173 18546326

32. Castro J, Costoya J, Señarís R, Arce V, Prieto A, Gallego R. Expression of growth hormone receptor in the human brain. Neurosci Lett. 2002;281(2–3):147–50.

33. Ajo R, Sánchez-Franco F, Navarro C, Cacicedo L. Growth Hormone Action on Proliferation and Differentiation of Cerebral Cortical Cells from Fetal Rat. Endocrinology. 2003;144(3):1086–97. doi: 10.1210/en.2002-220667 12586785

34. Turnley AM, Faux CH, Rietze RL, Coonan JR, Bartlett PF. Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling. Nat Neurosci. 2002;5:1155–1162. doi: 10.1038/nn954 12368809

35. McLenachan S, Lum MG, Waters MJ, Turnley AM. Growth hormone promotes proliferation of adult neurosphere cultures. Growth Horm IGF Res. 2009;19(3):212–8. doi: 10.1016/j.ghir.2008.09.003 18976947

36. Åberg ND, Johansson I, Åberg MAI, Lind J, Johansson UE, Cooper-Kuhn CM, et al. Peripheral administration of GH induces cell proliferation in the brain of adult hypophysectomized rats. J Endocrinol. 2009;201(1):141–50. doi: 10.1677/JOE-08-0495 19171566

37. Åberg ND, Lind J, Isgaard J, Kuhn HG. Peripheral growth hormone induces cell proliferation in the intact adult rat brain. Growth Horm IGF Res. 2010;20(3):264–9. doi: 10.1016/j.ghir.2009.12.003 20106687

38. Frater J, Lie D, Bartlett P, McGrath JJ. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review. Ageing Res Rev. 2018;42:14–27. doi: 10.1016/j.arr.2017.12.002 29233786

39. Muller AP, Fernandez AM, Haas C, Zimmer E, Portela LV, Torres-Aleman I. Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci. 2012;49(1):9–12. doi: 10.1016/j.mcn.2011.07.008 21807098

40. Christophidis LJ, Gorba T, Gustavsson M, Williams CE, Werther GA, Russo VC, et al. Growth hormone receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ischemia: A potential role for growth hormone in injury-induced neurogenesis. Growth Horm IGF Res. 2009;19(6):497–506. doi: 10.1016/j.ghir.2009.05.001 19524466

41. Guo SZ, Raccurt M, Brittian KR, Moudilou E, Li RC, Morel G, et al. Exogenous growth hormone attenuates cognitive deficits induced by intermittent hypoxia in rats. Neuroscience. 2011;196:237–50. doi: 10.1016/j.neuroscience.2011.08.029 21888951

42. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98. doi: 10.1093/hmg/ddu328 25064373

43. Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181–93. doi: 10.1093/brain/awy146 29878075

Interní lékařství

Článek vyšel v časopise

PLOS Medicine

2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Deprese u dětí a adolescentů
nový kurz
Autoři: MUDr. Vlastimil Nesnídal

Konsenzuální postupy v léčbě močových infekcí

COVID-19 up to date
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D., MUDr. Mikuláš Skála, prof. MUDr. František Kopřiva, Ph.D., prof. MUDr. Roman Prymula, CSc., Ph.D.

Betablokátory a Ca antagonisté z jiného úhlu
Autoři: prof. MUDr. Michal Vrablík, Ph.D., MUDr. Petr Janský

Chronické žilní onemocnění a možnosti konzervativní léčby

Všechny kurzy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se