Fosmidomycin, an inhibitor of isoprenoid synthesis, induces persistence in Chlamydia by inhibiting peptidoglycan assembly

Autoři: Jessica A. Slade aff001;  Mary Brockett aff002;  Raghuveer Singh aff001;  George W. Liechti aff002;  Anthony T. Maurelli aff001
Působiště autorů: Emerging Pathogens Institute and Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America aff001;  Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, United States of America aff002
Vyšlo v časopise: Fosmidomycin, an inhibitor of isoprenoid synthesis, induces persistence in Chlamydia by inhibiting peptidoglycan assembly. PLoS Pathog 15(10): e32767. doi:10.1371/journal.ppat.1008078
Kategorie: Research Article


The antibiotic, fosmidomycin (FSM) targets the methylerythritol phosphate (MEP) pathway of isoprenoid synthesis by inhibiting the essential enzyme, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr) and is lethal to intracellular parasites and bacteria. The obligate intracellular bacterial pathogen, Chlamydia trachomatis, alternates between two developmental forms: the extracellular, infectious elementary body (EB), and the intracellular, replicative form called the reticulate body (RB). Several stressful growth conditions including iron deprivation halt chlamydial cell division and cause development of a morphologically enlarged, but viable form termed an aberrant body (AB). This phenotype constitutes the chlamydial developmental state known as persistence. This state is reversible as removal of the stressor allows the chlamydiae to re-enter and complete the normal developmental cycle. Bioinformatic analysis indicates that C. trachomatis encodes a homolog of Dxr, but its function and the requirement for isoprenoid synthesis in chlamydial development is not fully understood. We hypothesized that chlamydial Dxr (DxrCT) is functional and that the methylerythritol phosphate (MEP) pathway is required for normal chlamydial development. Thus, FSM exposure should be lethal to C. trachomatis. Overexpression of chlamydial Dxr (DxrCT) in Escherichia coli under FSM exposure and in a conditionally lethal dxr mutant demonstrated that DxrCT functions similarly to E. coli Dxr. When Chlamydia-infected cultures were exposed to FSM, EB production was significantly reduced. However, titer recovery assays, electron microscopy, and peptidoglycan labeling revealed that FSM inhibition of isoprenoid synthesis is not lethal to C. trachomatis, but instead induces persistence. Bactoprenol is a critical isoprenoid required for peptidoglycan precursor assembly. We therefore conclude that FSM induces persistence in Chlamydia by preventing bactoprenol production necessary for peptidoglycan precursor assembly and subsequent cell division.

Klíčová slova:

Antibiotics – Crystal structure – HeLa cells – Chlamydia – Chlamydia infection – Peptidoglycans – Isoprenoids


1. World Health Organization (2012) Global incidence and prevalence of selected curable sexually transmitted infections-2008. WHO. doi: 10.1016/S0968-8080(12)40660-7

2. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S, Kiarie J, Temmerman M (2015) Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting. PLoS One 10:e0143304 doi: 10.1371/journal.pone.0143304 26646541

3. Centers for Disease Control and Prevention (2017) Sexually Transmitted Disease Surveillance 2017.

4. O’Connell CM, Ferone ME (2016) Chlamydia trachomatis Genital Infections. Microb cell (Graz, Austria) 3:390–403

5. Brunham RC, Rey-Ladino J (2005) Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 5:149–161 doi: 10.1038/nri1551 15688042

6. Marrazzo J, Suchland R (2014) Recent advances in understanding and managing Chlamydia trachomatis infections. F1000Prime Rep 6:120 doi: 10.12703/P6-120 25580274

7. Menon S, Timms P, Allan JA, Alexander K, Rombauts L, Horner P, Keltz M, Hocking J, Huston WM (2015) Human and Pathogen Factors Associated with Chlamydia trachomatis-Related Infertility in Women. Clin Microbiol Rev 28:969–85 doi: 10.1128/CMR.00035-15 26310245

8. Wyrick PB (2000) Intracellular survival by Chlamydia. Microreview. Cell Microbiol 2:275–282

9. McCoy AJ, Maurelli AT (2006) Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol 14:70–77 doi: 10.1016/j.tim.2005.12.004 16413190

10. Moore ER, Ouellette SP (2014) Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins. Front Cell Infect Microbiol 4:157 doi: 10.3389/fcimb.2014.00157 25401095

11. Wyrick PB (2010) Chlamydia trachomatis Persistence In Vitro: An Overview. J Infect Dis 201:88–95

12. Kintner J, Lajoie D, Hall J, Whittimore J, Schoborg R V (2014) Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations. Front Cell Infect Microbiol 4:44 doi: 10.3389/fcimb.2014.00044 24783061

13. Wyrick PB (2010) Chlamydia trachomatis persistence in vitro: an overview. J Infect Dis S88–95

14. Phillips Campbell R, Kintner J, Whittimore J, Schoborg R V. (2012) Chlamydia muridarum enters a viable but non-infectious state in amoxicillin-treated BALB/c mice. Microbes Infect 14:1177–1185 doi: 10.1016/j.micinf.2012.07.017 22943883

15. Lewis ME, Belland RJ, AbdelRahman YM, et al (2014) Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns. Front Cell Infect Microbiol 4:71 doi: 10.3389/fcimb.2014.00071 24959423

16. Christianson DW (2017) Structural and Chemical Biology of Terpenoid Cyclases. Chem Rev 117:11570–11648 doi: 10.1021/acs.chemrev.7b00287 28841019

17. Zhao L, Chang W, Xiao Y, Liu H, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530 doi: 10.1146/annurev-biochem-052010-100934 23746261

18. Heuston S, Begley M, Gahan CGM, Hill C (2012) Isoprenoid biosynthesis in bacterial pathogens. Microbiology 158:1389–1401 doi: 10.1099/mic.0.051599-0 22466083

19. McKenney ES, Sargent M, Khan H, Uh E, Jackson ER, Jose GS, Couch RD, Dowd CS, van Hoek ML (2012) Lipophilic Prodrugs of FR900098 Are Antimicrobial against Francisella novicida In Vivo and In Vitro and Show GlpT Independent Efficacy. PLoS One 7:e38167 doi: 10.1371/journal.pone.0038167 23077474

20. Mac Sweeney A, Lange R, Fernandes RPM, Schulz H, Dale GE, Douangamath A, Proteau PJ, Oefner C (2005) The Crystal Structure of E.coli 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase in a Ternary Complex with the Antimalarial Compound Fosmidomycin and NADPH Reveals a Tight-binding Closed Enzyme Conformation. J Mol Biol 345:115–127 doi: 10.1016/j.jmb.2004.10.030 15567415

21. Odom AR, Hasimoto M, Hemmi K, Takeno H, Matsiegui P (2011) Five Questions about Non-Mevalonate Isoprenoid Biosynthesis. PLoS Pathog 7:e1002323 doi: 10.1371/journal.ppat.1002323 22216001

22. Mombo-Ngoma G, Remppis J, Sievers M, et al (2017) Efficacy and Safety of Fosmidomycin–Piperaquine as Nonartemisinin-Based Combination Therapy for Uncomplicated Falciparum Malaria: A Single-Arm, Age De-escalation Proof-of-Concept Study in Gabon. Clin Infect Dis. doi: 10.1093/cid/cix1122 29293893

23. Davey MS, Tyrrell JM, Howe RA, Walsh TR, Moser B, Toleman MA, Eberl M (2011) A promising target for treatment of multidrug-resistant bacterial infections. Antimicrob Agents Chemother 55:3635–6 doi: 10.1128/AAC.00382-11 21537011

24. Zhang B, Watts KM, Hodge D, Kemp LM, Hunstad DA, Hicks LM, Odom AR (2011) A Second Target of the Antimalarial and Antibacterial Agent Fosmidomycin Revealed by Cellular Metabolic Profiling. Biochemistry 50:3570–3577 doi: 10.1021/bi200113y 21438569

25. Grieshaber NA, Fischer ER, Mead DJ, Dooley CA, Hackstadt T (2004) Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proc Natl Acad Sci U S A 101:7451–6 doi: 10.1073/pnas.0400754101 15123794

26. Carretero-Paulet L, Ahumada I, Cunillera N, Rodríguez-Concepción M, Ferrer A, Boronat A, Campos N (2002) Expression and Molecular Analysis of the ArabidopsisDXR Gene Encoding 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase, the First Committed Enzyme of the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway. Plant Physiol. 129:

27. Rodríguez-Concepción M, Campos N, María Lois L, Maldonado C, Hoeffler J-F, Grosdemange-Billiard C, Rohmer M, Boronat A (2000) Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli. FEBS Lett 473:328–332 doi: 10.1016/s0014-5793(00)01552-0 10818234

28. Guyer MS, Reed RR, Steitz JA, Low KB (1981) Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spring Harb Symp Quant Biol 45 Pt 1:135–40

29. Cronan JE (2006) A family of arabinose-inducible Escherichia coli expression vectors having pBR322 copy control. Plasmid 55:152–7 doi: 10.1016/j.plasmid.2005.07.001 16139359

30. Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. doi: 10.1016/j.gene.2006.04.018 16750601

31. Greenwood D (1990) Fosfomycin trometamol: Activity in vitro against urinary tract pathogens. Infection 18:S60–S64 doi: 10.1007/bf01643429 2286463

32. Law HT, Sriram A, Fevang C, Nix EB, Nano FE, Guttman JA (2014) IglC and PdpA Are Important for Promoting Francisella Invasion and Intracellular Growth in Epithelial Cells. PLoS One 9:e104881 doi: 10.1371/journal.pone.0104881 25115488

33. Golovliov I, Baranov V, Krocova Z, Kovarova H, Sjöstedt A (2003) An Attenuated Strain of the Facultative Intracellular Bacterium Francisella tularensis Can Escape the Phagosome of Monocytic Cells. Infect Immun 71:5940–5950 doi: 10.1128/IAI.71.10.5940-5950.2003 14500514

34. Ouellette SP, Karimova G, Subtil A, Ladant D (2012) Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol Microbiol 85:164–178 doi: 10.1111/j.1365-2958.2012.08100.x 22624979

35. Egan AJF, Vollmer W (2013) The physiology of bacterial cell division. Ann N Y Acad Sci 1277:8–28 doi: 10.1111/j.1749-6632.2012.06818.x 23215820

36. Liechti G, Kuru E, Packiam M, Hsu Y-P, Tekkam S, Hall E, Rittichier JT, VanNieuwenhze M, Brun Y V, Maurelli AT (2016) Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division. PLoS Pathog 12:e1005590 doi: 10.1371/journal.ppat.1005590 27144308

37. Liechti GW, Kuru E, Hall E, Kalinda A, Brun Y V, VanNieuwenhze M, Maurelli AT (2014) A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:507–10 doi: 10.1038/nature12892 24336210

38. Brown WJ, Rockey DD (2000) Identification of an antigen localized to an apparent septum within dividing chlamydiae. Infect Immun 68:708–15 doi: 10.1128/iai.68.2.708-715.2000 10639437

39. Packiam M, Weinrick B, Jacobs WR, Maurelli AT (2015) Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves “chlamydial anomaly”. Proc Natl Acad Sci U S A 112:11660–5 doi: 10.1073/pnas.1514026112 26290580

40. Panzetta ME, Valdivia RH, Saka HA (2018) Chlamydia Persistence: A Survival Strategy to Evade Antimicrobial Effects in-vitro and in-vivo. Front Microbiol 9:3101 doi: 10.3389/fmicb.2018.03101 30619180

41. Beatty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI (1994) Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun 62:3705–11 8063385

42. Schoborg R V. (2011) Chlamydia persistence—a tool to dissect chlamydia-host interactions. Microbes Infect 13:649–662 doi: 10.1016/j.micinf.2011.03.004 21458583

43. Vanover J, Kintner J, Whittimore J, Schoborg R V. (2010) Interaction of herpes simplex virus type 2 (HSV-2) glycoprotein D with the host cell surface is sufficient to induce Chlamydia trachomatis persistence. Microbiology 156:1294–302 doi: 10.1099/mic.0.036566-0 20110302

44. Jorgenson MA, Young KD (2016) Interrupting Biosynthesis of O Antigen or the Lipopolysaccharide Core Produces Morphological Defects in Escherichia coli by Sequestering Undecaprenyl Phosphate. J Bacteriol 198:3070–3079 doi: 10.1128/JB.00550-16 27573014

45. Bachmann NL, Polkinghorne A, Timms P (2014) Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol 22:464–472 doi: 10.1016/j.tim.2014.04.013 24882432

46. Henrichfreise B, Schiefer A, Schneider T, et al (2009) Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: why is lipid II needed? Mol Microbiol 73:913–923 doi: 10.1111/j.1365-2958.2009.06815.x 19656295

47. Ruiz N (2015) Lipid Flippases for Bacterial Peptidoglycan Biosynthesis. Lipid Insights 8:21–31 doi: 10.4137/LPI.S31783 26792999

48. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) STRUCTURE, FUNCTION, AND FORMATION OF BIOLOGICAL IRON-SULFUR CLUSTERS. Annu Rev Biochem 74:247–281 doi: 10.1146/annurev.biochem.74.082803.133518 15952888

49. Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P (2004) Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72:1843–55 doi: 10.1128/IAI.72.4.1843-1855.2004 15039303

50. Raulston JE (1997) Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun 65:4539–47 9353031

51. Bonaparte MI, Dimitrov AS, Bossart KN, et al (2005) From The Cover: Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci 102:10652–10657 doi: 10.1073/pnas.0504887102 15998730

52. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 doi: 10.1016/s0022-2836(83)80284-8 6345791

53. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371 doi: 10.1038/nprot.2009.2 19247286

54. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612 doi: 10.1002/jcc.20084 15264254

55. Schwechheimer C, Kulp A, Kuehn MJ, et al (2014) Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiol 14:324 doi: 10.1186/s12866-014-0324-1 25528573

56. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. doi: 10.1038/nprot.2008.227 19180090

57. Kintner J, Moore CG, Whittimore JD, Butler M, Hall J V. (2017) Inhibition of Wnt Signaling Pathways Impairs Chlamydia trachomatis Infection in Endometrial Epithelial Cells. Front Cell Infect Microbiol 7:501 doi: 10.3389/fcimb.2017.00501 29322031

Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens

2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
nový kurz
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Třikrát z interní medicíny
Autoři: Mgr. Jana Kubátová, Ph.D.

Pokročilá Parkinsonova nemoc − úskalí a možnosti léčby
Autoři: doc. MUDr. Marek Baláž, Ph.D.

Léčba diabetes mellitus 2. typu pomocí GLP- 1 RA

Depresivní porucha a zánětlivé procesy
Autoři: MUDr. Juraj Tkáč

Všechny kurzy
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se