Iron availability and oxygen tension regulate the Yersinia Ysc type III secretion system to enable disseminated infection


Autoři: Diana Hooker-Romero aff001;  Erin Mettert aff002;  Leah Schwiesow aff003;  David Balderas aff001;  Pablo A. Alvarez aff001;  Anadin Kicin aff001;  Azuah L. Gonzalez aff001;  Gregory V. Plano aff004;  Patricia J. Kiley aff002;  Victoria Auerbuch aff001
Působiště autorů: Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America aff001;  Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America aff002;  Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America aff003;  Department of Microbiology and Immunology, University of Miami, Miami, FL, United States of America aff004
Vyšlo v časopise: Iron availability and oxygen tension regulate the Yersinia Ysc type III secretion system to enable disseminated infection. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008001
Kategorie: Research Article
doi: 10.1371/journal.ppat.1008001

Souhrn

The enteropathogen Yersinia pseudotuberculosis and the related plague agent Y. pestis require the Ysc type III secretion system (T3SS) to subvert phagocyte defense mechanisms and cause disease. Yet type III secretion (T3S) in Yersinia induces growth arrest and innate immune recognition, necessitating tight regulation of the T3SS. Here we show that Y. pseudotuberculosis T3SS expression is kept low under anaerobic, iron-rich conditions, such as those found in the intestinal lumen where the Yersinia T3SS is not required for growth. In contrast, the Yersinia T3SS is expressed under aerobic or anaerobic, iron-poor conditions, such as those encountered by Yersinia once they cross the epithelial barrier and encounter phagocytic cells. We further show that the [2Fe-2S] containing transcription factor, IscR, mediates this oxygen and iron regulation of the T3SS by controlling transcription of the T3SS master regulator LcrF. IscR binds directly to the lcrF promoter and, importantly, a mutation that prevents this binding leads to decreased disseminated infection of Y. pseudotuberculosis but does not perturb intestinal colonization. Similar to E. coli, Y. pseudotuberculosis uses the Fe-S cluster occupancy of IscR as a readout of oxygen and iron conditions that impact cellular Fe-S cluster homeostasis. We propose that Y. pseudotuberculosis has coopted this system to sense entry into deeper tissues and induce T3S where it is required for virulence. The IscR binding site in the lcrF promoter is completely conserved between Y. pseudotuberculosis and Y. pestis. Deletion of iscR in Y. pestis leads to drastic disruption of T3S, suggesting that IscR control of the T3SS evolved before Y. pestis split from Y. pseudotuberculosis.

Klíčová slova:

Gastrointestinal tract – Gene expression – Oxygen – Secretion – Secretion systems – Yersinia pestis – Yersinia pseudotuberculosis – Yersinia


Zdroje

1. McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, et al. Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem. 2003;278(32):29478–86. Epub 2003/05/15. doi: 10.1074/jbc.M303381200 12746439.

2. Carpenter C, Payne SM. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. J Inorg Biochem. 2014;133:110–7. Epub 2014/02/04. doi: 10.1016/j.jinorgbio.2014.01.007 24485010; PubMed Central PMCID: PMC3964178.

3. Litwin CM, microbiology reviews C-SB. Role of iron in regulation of virulence genes. Clinical Microbiology Reviews. 1993. doi: 10.1128/CMR.6.2.137 8472246

4. Schaible UE, Kaufmann SHE. Iron and microbial infection. Nature Reviews Microbiology. 2004;2:946. doi: 10.1038/nrmicro1046 15550940

5. Guo BX, Wang QQ, Li JH, Gan ZS, Oncotarget Z-XF. Lipocalin 2 regulates intestine bacterial survival by interplaying with siderophore in a weaned piglet model of Escherichia coli infection. Oncotarget. 2017.

6. Nemeth E, Ganz T. Regulation of Iron Metabolism by Hepcidin. 2006;26(1):323–42. doi: 10.1146/annurev.nutr.26.061505.111303 16848710.

7. Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nature reviews Immunology. 2015;15(8):500–10. Epub 2015/07/10. doi: 10.1038/nri3863 26160612.

8. Forman S, Paulley JT, Fetherston JD, Cheng Y-QQ, Perry RD. Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Biometals. 2010;23(2):275–94. doi: 10.1007/s10534-009-9286-4 20049509

9. Marceau M. Transcriptional regulation in Yersinia: an update. Current Issues in Molecular Biology. 2005;7(2):151–77. 16053248

10. Staggs TM, Perry RD. Fur regulation in Yersinia species. Molecular Microbiology. 1992;6(17):2507–16. doi: 10.1111/j.1365-2958.1992.tb01427.x 1406286

11. Fillat MF. The FUR (ferric uptake regulator) superfamily: Diversity and versatility of key transcriptional regulators. Archives of Biochemistry and Biophysics. 2014;546:41–52. doi: 10.1016/j.abb.2014.01.029 24513162

12. Zheng M, Doan B, Schneider TD, of bacteriology S-G. OxyR and SoxRS regulation of fur. Journal of Bacteriology. 1999.

13. Marteyn B, Scorza F, Sansonetti PJ, Tang C. Breathing life into pathogens: the influence of oxygen on bacterial virulence and host responses in the gastrointestinal tract. Cellular Microbiology. 2011;13(2):171–6. doi: 10.1111/j.1462-5822.2010.01549.x 21166974

14. Zheng L, Kelly CJ, of Physiology-Cell C-SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. American Journal of Physiology-Cell Physiology. 2015.

15. Marteyn B, West NP, Browning DF, Cole JA, Nature S-JG. Modulation of Shigella virulence in response to available oxygen in vivo. Nature. 2010.

16. Kim K, Golubeva YA, Vanderpool CK, Slauch JM. Oxygen‐dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium. Molecular Microbiology. 2019;111(3):570–87. doi: 10.1111/mmi.14174 30484918

17. Ando H, Abe H, Sugimoto N, Tobe T. Maturation of functional type III secretion machinery by activation of anaerobic respiration in enterohaemorrhagic Escherichia coli. Microbiology (Reading, England). 2007;153(Pt 2):464–73. doi: 10.1099/mic.0.2006/000893-0 17259617

18. Avican K, Fahlgren A, Huss M, Heroven AK, Beckstette M, Dersch P, et al. Reprogramming of Yersinia from Virulent to Persistent Mode Revealed by Complex In Vivo RNA-seq Analysis. PLoS Pathogens. 2015;11(1). doi: 10.1371/journal.ppat.1004600 25590628

19. Giel JL, Nesbit AD, Mettert EL, Fleischhacker AS, Wanta BT, Kiley PJ. Regulation of iron–sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe–2S]–IscR in Escherichia coli. Molecular Microbiology. 2013;87(3):478–92. doi: 10.1111/mmi.12052 23075318

20. Santos JA, Pereira PJ, Macedo-Ribeiro S. What a difference a cluster makes: The multifaceted roles of IscR in gene regulation and DNA recognition. Biochim Biophys Acta. 2015;1854(9):1101–12. Epub 2015/02/03. doi: 10.1016/j.bbapap.2015.01.010 25641558.

21. Lim JG, Choi SH. IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect Immun. 2014;82(2):569–78. Epub 2014/01/31. doi: 10.1128/IAI.01141-13 24478072; PubMed Central PMCID: PMC3911388.

22. Vergnes A, Viala J, Ouadah‐Tsabet R, Pocachard B, Loiseau L, Méresse S, et al. The iron–sulfur cluster sensor IscR is a negative regulator of Spi1 type III secretion system in Salmonella enterica. Cellular Microbiology. 2016. doi: 10.1111/cmi.12680 27704705

23. Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci U S A. 2001;98(26):14895–900. Epub 2001/12/14. doi: 10.1073/pnas.251550898 11742080; PubMed Central PMCID: PMC64955.

24. Miller HK, Kwuan L, Schwiesow L, Bernick DL, Mettert E, Ramirez HA, et al. IscR Is Essential for Yersinia pseudotuberculosis Type III Secretion and Virulence. PLoS Pathogens. 2014;10(6). doi: 10.1371/journal.ppat.1004194 24945271

25. Nesbit AD, Giel JL, Rose JC, Kiley PJ. Sequence-Specific Binding to a Subset of IscR-Regulated Promoters Does Not Require IscR Fe–S Cluster Ligation. Journal of Molecular Biology. 2009;387(1):28–41. doi: 10.1016/j.jmb.2009.01.055 19361432

26. Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proceedings of the National Academy of Sciences. 2001;98(26):14895–900. doi: 10.1073/pnas.251550898 11742080

27. Haines S, Arnaud-Barbe N, Poncet D, Reverchon S, Wawrzyniak J, Nasser W, et al. IscR Regulates Synthesis of Colonization Factor Antigen I Fimbriae in Response to Iron Starvation in Enterotoxigenic Escherichia coli. J Bacteriol. 2015;197(18):2896–907. Epub 2015/07/01. doi: 10.1128/JB.00214-15 26124243; PubMed Central PMCID: PMC4542172.

28. Romsang A, Duang-Nkern J, Wirathorn W, Vattanaviboon P, Mongkolsuk S. Pseudomonas aeruginosa IscR-Regulated Ferredoxin NADP(+) Reductase Gene (fprB) Functions in Iron-Sulfur Cluster Biogenesis and Multiple Stress Response. PLoS One. 2015;10(7):e0134374. Epub 2015/08/01. doi: 10.1371/journal.pone.0134374 26230408; PubMed Central PMCID: PMC4521836.

29. Schwiesow L, Mettert E, Wei Y, Miller HK, Herrera NG, Balderas D, et al. Control of hmu Heme Uptake Genes in Yersinia pseudotuberculosis in Response to Iron Sources. Front Cell Infect Microbiol. 2018;8:47. Epub 2018/03/10. doi: 10.3389/fcimb.2018.00047 29520342; PubMed Central PMCID: PMC5827684.

30. Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ. IscR‐dependent gene expression links iron‐sulphur cluster assembly to the control of O2‐regulated genes in Escherichia coli. Molecular Microbiology. 2006;60(4):1058–75. doi: 10.1111/j.1365-2958.2006.05160.x 16677314

31. Kusmierek M, Hoßmann J, Witte R, Opitz W, Vollmer I, Volk M, et al. A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact. PLoS Pathogens. 2019;15(6). doi: 10.1371/journal.ppat.1007813 31173606

32. Schwiesow L, Lam H, Dersch P, Auerbuch V. Yersinia type III secretion system master regulator LcrF. Journal of Bacteriology. 2016. doi: 10.1128/JB.00686-15 PubMed Central PMCID: PMC2016. 26644429

33. Straley SC, Plano GV, Skrzypek E, Haddix PL, Fields KA. Regulation by Ca2+ in the Yersinia low‐Ca2+ response. Molecular Microbiology. 1993;8(6):1005–10. doi: 10.1111/j.1365-2958.1993.tb01644.x 8361348

34. Wattiau P, Cornelis GR. Identification of DNA sequences recognized by VirF, the transcriptional activator of the Yersinia yop regulon. Journal of Bacteriology. 1994;176(13):3878–84. doi: 10.1128/jb.176.13.3878-3884.1994 8021169

35. Bohme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, et al. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog. 2012;8(2):e1002518. Epub 2012/02/24. doi: 10.1371/journal.ppat.1002518 22359501; PubMed Central PMCID: PMC3280987.

36. Sample AK, Fowler JM, Brubaker RR. Modulation of the low-calcium response in Yersinia pestis via plasmid-plasmid interaction. Microbial Pathogenesis. 1987;2(6):443–53. doi: 10.1016/0882-4010(87)90051-9 3507558

37. Hoe NP, Goguen JD. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. Journal of Bacteriology. 1993;175(24):7901–9. doi: 10.1128/jb.175.24.7901-7909.1993 7504666

38. Cornells GR, Sluiters C, Delor I, Geib D, Kaniga K, Rouvroit LC, et al. ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Molecular Microbiology. 1991;5(5):1023–34. doi: 10.1111/j.1365-2958.1991.tb01875.x 1956283

39. Jackson MW, Silva‐Herzog E, Plano GV. The ATP‐dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone‐like protein. Molecular Microbiology. 2004;54(5):1364–78. doi: 10.1111/j.1365-2958.2004.04353.x 15554975

40. Holmström A, Pettersson J, Rosqvist R, Håkansson S, Tafazoli F, Fällman M, et al. YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane. Molecular Microbiology. 1997;24(1):73–91. doi: 10.1046/j.1365-2958.1997.3211681.x 9140967

41. Marra A, Isberg R. Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer's patch intestinal epithelium. Infection and Immunity. 1997;65(8). PubMed Central PMCID: PMC1997.

42. Grützkau A, Hanski C, Hahn H, Gut R-EO. Involvement of M cells in the bacterial invasion of Peyer's patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut. 1990. doi: 10.1136/gut.31.9.1011 2210445

43. Balada-Llasat J-M, Mecsas J. Yersinia Has a Tropism for B and T Cell Zones of Lymph Nodes That Is Independent of the Type III Secretion System. PLoS Pathogens. 2006;2(9). doi: 10.1371/journal.ppat.0020086 16948531

44. Barnes PD, Bergman MA, Mecsas J, Isberg RR. Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. The Journal of Experimental Medicine. 2006;203(6):1591–601. doi: 10.1084/jem.20060905 16754724

45. Oellerich MF, Jacobi CA, Freund S, Niedung K, Bach A, Heesemann J, et al. Yersinia enterocolitica Infection of Mice Reveals Clonal Invasion and Abscess Formation. Infection and Immunity. 2007;75(8):3802–11. doi: 10.1128/IAI.00419-07 17562774

46. Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Sabatino A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350(6262):830–4. doi: 10.1126/science.aad0135 26564856

47. Wu CC, Wang CK, Chen YC, Lin TH, Jinn TR, Lin CT. IscR regulation of capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. PLoS One. 2014;9(9):e107812. Epub 2014/09/23. doi: 10.1371/journal.pone.0107812 25237815; PubMed Central PMCID: PMC4169559.

48. Jacobi CA, Gregor S, Rakin A, Heesemann J. Expression Analysis of the Yersiniabactin Receptor Gene fyuA and the Heme Receptor hemR of Yersinia enterocolitica In Vitro and In Vivo Using the Reporter Genes for Green Fluorescent Protein and Luciferase. Infection and Immunity. 2001;69(12):7772–82. doi: 10.1128/IAI.69.12.7772-7782.2001 11705959

49. Sebbane F, Lemaître N, Sturdevant DE, Rebeil R, Virtaneva K, Porcella SF, et al. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. 2006;103(31):11766–71. doi: 10.1073/pnas.0601182103 J Proceedings of the National Academy of Sciences. 16864791

50. Nuss AM, Beckstette M, Pimenova M, Schmühl C, Opitz W, Pisano F, et al. Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host–pathogen transcriptomes. Proceedings of the National Academy of Sciences. 2017;114(5). doi: 10.1073/pnas.1613405114 28096329

51. Davis KM, Mohammadi S, Isberg RR. Community Behavior and Spatial Regulation within a Bacterial Microcolony in Deep Tissue Sites Serves to Protect against Host Attack. Cell Host & Microbe. 2015;17(1):21–31. doi: 10.1016/j.chom.2014.11.008 25500192

52. Sun Y, Jarrett CO, Bosio CF, Hinnebusch BJ. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host & Microbe. 2014; 15(5): 578–586. doi: 10.1016/j.chom.2014.04.003 24832452.

53. Cheng LW, Anderson DM, Schneewind O. Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Molecular microbiology. 1997;24(4):757–65. doi: 10.1046/j.1365-2958.1997.3831750.x 9194703.

54. Auerbuch V, Golenbock DT, Isberg RR. Innate Immune Recognition of Yersinia pseudotuberculosis Type III Secretion. PLoS Pathogens. 2009;5(12). doi: 10.1371/journal.ppat.1000686 19997504

55. Andrews HL, Vogel JP, Isberg RR. Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infection and Immunity. 1998;66(3):950–8. 9488381; PubMed Central PMCID: PMC108001.

56. Merriam JJ, Mathur R, Maxfield-Boumil R, Isberg RR. Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infection and Immunity. 1997;65(6):2497–501. 9169800; PubMed Central PMCID: PMC175352.

57. Hooker-Romero D, Schwiesow L, Wei Y, Auerbuch V. Mouse Models of Yersiniosis. Pathogenic Yersinia, Methods and Protocols. 2019:41–53. doi: 10.1007/978-1-4939-9541-7_4 31177430

58. Krall R, Zhang Y, Barbieri JT. Intracellular Membrane Localization of Pseudomonas ExoS and Yersinia YopE in Mammalian Cells. Journal of Biological Chemistry. 2004;279(4):2747–53. doi: 10.1074/jbc.M301963200 14597627

59. Bliska JB, Guan KL, Dixon JE, Falkow S. Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proceedings of the National Academy of Sciences. 1991;88(4):1187–91. doi: 10.1073/pnas.88.4.1187 1705028

60. Lähteenmäki K, Virkola R, Sarén A, Emödy L, Korhonen TK. Expression of Plasminogen Activator Pla ofYersinia pestis Enhances Bacterial Attachment to the Mammalian Extracellular Matrix. Infection and Immunity. 1998;66(12):5755–62. 9826351

61. Morgan JM, Lam HN, Delgado J, Luu J, Mohammadi S, Isberg RR, et al. An Experimental Pipeline for Initial Characterization of Bacterial Type III Secretion System Inhibitor Mode of Action Using Enteropathogenic Yersinia. Frontiers in Cellular and Infection Microbiology. 2018;8:404. doi: 10.3389/fcimb.2018.00404 30524970

62. Morgan JM, Duncan MC, Johnson KS, Diepold A, Lam H, Dupzyk AJ, et al. Piericidin A1 Blocks Yersinia Ysc Type III Secretion System Needle Assembly. mSphere. 2017;2(1):17. doi: 10.1128/mSphere.00030-17 28217742

63. Goverde RLJ, Kusters JG, Veld HJHJ. Growth rate and physiology of Yersinia enterocolitica; influence of temperature and presence of the virulence plasmid. Journal of Applied Microbiology. 1994;77(1):96–104. doi: 10.1111/j.1365-2672.1994.tb03050.x 7928786

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 12

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Nová éra v léčbě migrény
nový kurz
Autoři: MUDr. Eva Medová, MUDr. Tomáš Nežádal, Ph.D.

Význam nutraceutik u kardiovaskulárních onemocnění
Autoři:

Pneumowebinář
Autoři:

White paper - jak vidíme optimální péči o zubní náhrady
Autoři: MUDr. Jindřich Charvát, CSc.

Faktory ovlivňující léčbu levotyroxinem

Všechny kurzy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se