#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

PDGFRA defines the mesenchymal stem cell Kaposi’s sarcoma progenitors by enabling KSHV oncogenesis in an angiogenic environment


Autoři: Julian Naipauer aff001;  Santas Rosario aff001;  Sachin Gupta aff001;  Courtney Premer aff003;  Omayra Méndez-Solís aff001;  Mariana Schlesinger aff001;  Virginia Ponzinibbio aff001;  Vaibhav Jain aff004;  Lauren Gay aff004;  Rolf Renne aff004;  Ho Lam Chan aff005;  Lluis Morey aff005;  Daria Salyakina aff001;  Martin Abba aff002;  Sion Williams aff002;  Joshua M. Hare aff003;  Pascal J. Goldschmidt-Clermont aff001;  Enrique A. Mesri aff001
Působiště autorů: Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, Miami, Florida, United States of America aff001;  UM-CFAR/ Sylvester CCC Argentina Consortium for Research and Training in Virally induced AIDS-Malignancies, Miami, Florida, United States of America aff002;  Interdisciplinary Stem Cell Institute; University of Miami Miller School of Medicine, Miami, Florida, United States of America aff003;  Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America aff004;  Department of Human Genetics, Universidad Nacional de La Plata, La Plata, Argentina aff005;  Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina aff006;  Neurology Basic Science Division, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine, Miami, Florida, United States of America aff007
Vyšlo v časopise: PDGFRA defines the mesenchymal stem cell Kaposi’s sarcoma progenitors by enabling KSHV oncogenesis in an angiogenic environment. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008221
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008221

Souhrn

Kaposi’s sarcoma (KS) is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV). Unanswered questions regarding KS are its cellular ontology and the conditions conducive to viral oncogenesis. We identify PDGFRA(+)/SCA-1(+) bone marrow-derived mesenchymal stem cells (Pα(+)S MSCs) as KS spindle-cell progenitors and found that pro-angiogenic environmental conditions typical of KS are critical for KSHV sarcomagenesis. This is because growth in KS-like conditions generates a de-repressed KSHV epigenome allowing oncogenic KSHV gene expression in infected Pα(+)S MSCs. Furthermore, these growth conditions allow KSHV-infected Pα(+)S MSCs to overcome KSHV-driven oncogene-induced senescence and cell cycle arrest via a PDGFRA-signaling mechanism; thus identifying PDGFRA not only as a phenotypic determinant for KS-progenitors but also as a critical enabler for viral oncogenesis.

Klíčová slova:

Carcinogenesis – Endothelial cells – Fluorescence imaging – Gene expression – Kaposi's sarcoma-associated herpesvirus – Mesenchymal stem cells – Kaposi sarcoma – Oncogenic signaling


Zdroje

1. Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014;15(3):266–82. doi: 10.1016/j.chom.2014.02.011 24629334; PubMed Central PMCID: PMC3992243.

2. Mesri EA, Cesarman E, Boshoff C. Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer. 2010;10(10):707–19. doi: 10.1038/nrc2888 20865011; PubMed Central PMCID: PMC4721662.

3. Dittmer DP, Damania B. Kaposi sarcoma-associated herpesvirus: immunobiology, oncogenesis, and therapy. J Clin Invest. 2016;126(9):3165–75. doi: 10.1172/JCI84418 27584730; PubMed Central PMCID: PMC5004954.

4. Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. Kaposi sarcoma. Nat Rev Dis Primers. 2019;5(1):9. doi: 10.1038/s41572-019-0060-9 30705286.

5. Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest. 2010;120(4):939–49. doi: 10.1172/JCI40567 20364091; PubMed Central PMCID: PMC2847423.

6. Cavallin LE, Goldschmidt-Clermont P, Mesri EA. Molecular and cellular mechanisms of KSHV oncogenesis of Kaposi's sarcoma associated with HIV/AIDS. PLoS Pathog. 2014;10(7):e1004154. doi: 10.1371/journal.ppat.1004154 25010730; PubMed Central PMCID: PMC4092131.

7. Krown SE. Therapy of AIDS-associated Kaposi's sarcoma: targeting pathogenetic mechanisms. Hematol Oncol Clin North Am. 2003;17(3):763–83. doi: 10.1016/s0889-8588(03)00042-x 12852655.

8. Nguyen HQ, Magaret AS, Kitahata MM, Van Rompaey SE, Wald A, Casper C. Persistent Kaposi sarcoma in the era of highly active antiretroviral therapy: characterizing the predictors of clinical response. AIDS. 2008;22(8):937–45. doi: 10.1097/QAD.0b013e3282ff6275 18453853; PubMed Central PMCID: PMC2730951.

9. Labo N, Miley W, Benson CA, Campbell TB, Whitby D. Epidemiology of Kaposi's sarcoma-associated herpesvirus in HIV-1-infected US persons in the era of combination antiretroviral therapy. AIDS. 2015;29(10):1217–25. doi: 10.1097/QAD.0000000000000682 26035321.

10. Maurer T, Ponte M, Leslie K. HIV-associated Kaposi's sarcoma with a high CD4 count and a low viral load. N Engl J Med. 2007;357(13):1352–3. doi: 10.1056/NEJMc070508 17898112.

11. Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, et al. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nature genetics. 2004;36(7):683–5. doi: 10.1038/ng1383 15220917.

12. Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nature genetics. 2004;36(7):687–93. doi: 10.1038/ng1384 15220918.

13. Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Gunther T, et al. KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host Microbe. 2011;10(6):577–90. doi: 10.1016/j.chom.2011.10.011 22177562.

14. Cavallin LE, Ma Q, Naipauer J, Gupta S, Kurian M, Locatelli P, et al. KSHV-induced ligand mediated activation of PDGF receptor-alpha drives Kaposi's sarcomagenesis. PLoS Pathog. 2018;14(7):e1007175. doi: 10.1371/journal.ppat.1007175 29985958.

15. Ojala PM, Schulz TF. Manipulation of endothelial cells by KSHV: implications for angiogenesis and aberrant vascular differentiation. Semin Cancer Biol. 2014;26:69–77. doi: 10.1016/j.semcancer.2014.01.008 24486643.

16. Della Bella S, Taddeo A, Calabro ML, Brambilla L, Bellinvia M, Bergamo E, et al. Peripheral blood endothelial progenitors as potential reservoirs of Kaposi's sarcoma-associated herpesvirus. PloS one. 2008;3(1):e1520. doi: 10.1371/journal.pone.0001520 18231605; PubMed Central PMCID: PMC2204065.

17. Cancian L, Hansen A, Boshoff C. Cellular origin of Kaposi's sarcoma and Kaposi's sarcoma-associated herpesvirus-induced cell reprogramming. Trends in cell biology. 2013;23(9):421–32. doi: 10.1016/j.tcb.2013.04.001 23685018.

18. Mesri EA. Inflammatory reactivation and angiogenicity of Kaposi's sarcoma-associated herpesvirus/HHV8: a missing link in the pathogenesis of acquired immunodeficiency syndrome-associated Kaposi's sarcoma. Blood. 1999;93(12):4031–3. 10361099.

19. Browning PJ, Sechler JM, Kaplan M, Washington RH, Gendelman R, Yarchoan R, et al. Identification and culture of Kaposi's sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. Blood. 1994;84(8):2711–20. 7522639.

20. Monini P, Colombini S, Sturzl M, Goletti D, Cafaro A, Sgadari C, et al. Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood. 1999;93(12):4044–58. 10361101.

21. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 1998;391(6662):86–9. doi: 10.1038/34193 9422510.

22. Cesarman E, Mesri EA, Gershengorn MC. Viral G protein-coupled receptor and Kaposi's sarcoma: a model of paracrine neoplasia? The Journal of experimental medicine. 2000;191(3):417–22. doi: 10.1084/jem.191.3.417 10662787.

23. Montaner S, Sodhi A, Ramsdell AK, Martin D, Hu J, Sawai ET, et al. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi's sarcoma. Cancer research. 2006;66(1):168–74. doi: 10.1158/0008-5472.CAN-05-1026 16397229.

24. An FQ, Folarin HM, Compitello N, Roth J, Gerson SL, McCrae KR, et al. Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi's sarcoma-associated herpesvirus latency in vitro and in vivo. Journal of virology. 2006;80(10):4833–46. doi: 10.1128/JVI.80.10.4833-4846.2006 PubMed Central PMCID: 16641275.

25. Roy D, Sin SH, Lucas A, Venkataramanan R, Wang L, Eason A, et al. mTOR inhibitors block Kaposi sarcoma growth by inhibiting essential autocrine growth factors and tumor angiogenesis. Cancer Res. 2013;73(7):2235–46. doi: 10.1158/0008-5472.CAN-12-1851 23382046; PubMed Central PMCID: PMC3618543.

26. Mutlu AD, Cavallin LE, Vincent L, Chiozzini C, Eroles P, Duran EM, et al. In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi's sarcoma. Cancer Cell. 2007;11(3):245–58. doi: 10.1016/j.ccr.2007.01.015 17349582; PubMed Central PMCID: PMC2180156.

27. Ashlock BM, Ma Q, Issac B, Mesri EA. Productively infected murine Kaposi's sarcoma-like tumors define new animal models for studying and targeting KSHV oncogenesis and replication. PLoS One. 2014;9(1):e87324. doi: 10.1371/journal.pone.0087324 24489895; PubMed Central PMCID: PMC3905023.

28. Jones T, Ye F, Bedolla R, Huang Y, Meng J, Qian L, et al. Direct and efficient cellular transformation of primary rat mesenchymal precursor cells by KSHV. J Clin Invest. 2012;122(3):1076–81. doi: 10.1172/JCI58530 22293176; PubMed Central PMCID: PMC3287217.

29. Koon HB, Krown SE, Lee JY, Honda K, Rapisuwon S, Wang Z, et al. Phase II trial of imatinib in AIDS-associated Kaposi's sarcoma: AIDS Malignancy Consortium Protocol 042. J Clin Oncol. 2014;32(5):402–8. doi: 10.1200/JCO.2012.48.6365 24378417; PubMed Central PMCID: PMC3912327.

30. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009;206(11):2483–96. doi: 10.1084/jem.20091046 19841085; PubMed Central PMCID: PMC2768869.

31. Rodriguez R, Rubio R, Menendez P. Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Res. 2012;22(1):62–77. doi: 10.1038/cr.2011.157 21931359; PubMed Central PMCID: PMC3351912.

32. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11(12):865–78. doi: 10.1038/nrc3143 22089421.

33. Ho AL, Vasudeva SD, Lae M, Saito T, Barbashina V, Antonescu CR, et al. PDGF receptor alpha is an alternative mediator of rapamycin-induced Akt activation: implications for combination targeted therapy of synovial sarcoma. Cancer Res. 2012;72(17):4515–25. doi: 10.1158/0008-5472.CAN-12-1319 22787122; PubMed Central PMCID: PMC3432680.

34. Gurzu S, Ciortea D, Munteanu T, Kezdi-Zaharia I, Jung I. Mesenchymal-to-endothelial transition in Kaposi sarcoma: a histogenetic hypothesis based on a case series and literature review. PLoS One. 2013;8(8):e71530. doi: 10.1371/journal.pone.0071530 23936513; PubMed Central PMCID: PMC3735554.

35. Lee MS, Yuan H, Jeon H, Zhu Y, Yoo S, Shi S, et al. Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi's Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes. MBio. 2016;7(1):e02109–15. Epub 2016/01/28. doi: 10.1128/mBio.02109-15 26814175; PubMed Central PMCID: PMC4742711.

36. Li Y, Zhong C, Liu D, Yu W, Chen W, Wang Y, et al. Evidence for Kaposi's Sarcoma originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition. Cancer Res. 2017. doi: 10.1158/0008-5472.CAN-17-1961 29066510.

37. Parsons CH, Szomju B, Kedes DH. Susceptibility of human fetal mesenchymal stem cells to Kaposi sarcoma-associated herpesvirus. Blood. 2004;104(9):2736–8. doi: 10.1182/blood-2004-02-0693 15238422; PubMed Central PMCID: PMC2739377.

38. Yoo SM, Jang J, Yoo C, Lee MS. Kaposi's sarcoma-associated herpesvirus infection of human bone-marrow-derived mesenchymal stem cells and their angiogenic potential. Arch Virol. 2014;159(9):2377–86. doi: 10.1007/s00705-014-2094-3 24777829.

39. Gomes SA, Rangel EB, Premer C, Dulce RA, Cao Y, Florea V, et al. S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proc Natl Acad Sci U S A. 2013;110(8):2834–9. doi: 10.1073/pnas.1220185110 23288904; PubMed Central PMCID: PMC3581904.

40. Vieira J, O'Hearn PM. Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology. 2004;325(2):225–40. doi: 10.1016/j.virol.2004.03.049 15246263.

41. Burgess WH, Mehlman T, Marshak DR, Fraser BA, Maciag T. Structural evidence that endothelial cell growth factor beta is the precursor of both endothelial cell growth factor alpha and acidic fibroblast growth factor. Proc Natl Acad Sci U S A. 1986;83(19):7216–20. doi: 10.1073/pnas.83.19.7216 3532107; PubMed Central PMCID: PMC386686.

42. Maciag T, Hoover GA, Weinstein R. High and low molecular weight forms of endothelial cell growth factor. J Biol Chem. 1982;257(10):5333–6. 7068593.

43. Tso FY, Kossenkov AV, Lidenge SJ, Ngalamika O, Ngowi JR, Mwaiselage J, et al. RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathog. 2018;14(1):e1006844. doi: 10.1371/journal.ppat.1006844 29352292; PubMed Central PMCID: PMC5792027.

44. Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M, et al. Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci U S A. 2001;98(7):4119–24. doi: 10.1073/pnas.051004198 11274437; PubMed Central PMCID: PMC31189.

45. Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM. Chromatin remodeling of the Kaposi's sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol. 2003;77(21):11425–35. doi: 10.1128/JVI.77.21.11425-11435.2003 14557628; PubMed Central PMCID: PMC229253.

46. Toth Z, Maglinte DT, Lee SH, Lee HR, Wong LY, Brulois KF, et al. Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog. 2010;6(7):e1001013. doi: 10.1371/journal.ppat.1001013 20661424; PubMed Central PMCID: PMC2908616.

47. Gunther T, Grundhoff A. The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes. PLoS Pathog. 2010;6(6):e1000935. doi: 10.1371/journal.ppat.1000935 20532208; PubMed Central PMCID: PMC2880564.

48. Hu J, Yang Y, Turner PC, Jain V, McIntyre LM, Renne R. LANA binds to multiple active viral and cellular promoters and associates with the H3K4methyltransferase hSET1 complex. PLoS Pathog. 2014;10(7):e1004240. doi: 10.1371/journal.ppat.1004240 25033463; PubMed Central PMCID: PMC4102568.

49. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37. doi: 10.1016/j.cell.2007.05.009 17512414.

50. Bhatt S, Ashlock BM, Toomey NL, Diaz LA, Mesri EA, Lossos IS, et al. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest. 2013;123(6):2616–28. doi: 10.1172/JCI64503 23635777; PubMed Central PMCID: PMC3668825.

51. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, et al. Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med. 1996;2(3):342–6. doi: 10.1038/nm0396-342 8612236.

52. Gwack Y, Byun H, Hwang S, Lim C, Choe J. CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi's sarcoma-associated herpesvirus open reading frame 50. J Virol. 2001;75(4):1909–17. doi: 10.1128/JVI.75.4.1909-1917.2001 11160690; PubMed Central PMCID: PMC115137.

53. Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A. 1998;95(18):10866–71. doi: 10.1073/pnas.95.18.10866 9724796; PubMed Central PMCID: PMC27987.

54. Davy C, Doorbar J. G2/M cell cycle arrest in the life cycle of viruses. Virology. 2007;368(2):219–26. doi: 10.1016/j.virol.2007.05.043 17675127.

55. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602. doi: 10.1016/s0092-8674(00)81902-9 9054499.

56. Adams PD. Healing and Hurting: Molecular Mechanisms, Functions, and Pathologies of Cellular Senescence. Molecular Cell. 2009;36(1):2–14. doi: 10.1016/j.molcel.2009.09.021 WOS:000271060500002. 19818705

57. Koopal S, Furuhjelm JH, Jarviluoma A, Jaamaa S, Pyakurel P, Pussinen C, et al. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. Plos Pathogens. 2007;3(9):1348–60. ARTN e140 WOS:000249768300016. doi: 10.1371/journal.ppat.0030140 17907806

58. Leida AM, Cyr DP, Hill RJ, Lee PWK, McCormick C. Subversion of Autophagy by Kaposi's Sarcoma-Associated Herpesvirus Impairs Oncogene-Induced Senescence. Cell Host & Microbe. 2012;11(2):167–80. doi: 10.1016/j.chom.2012.01.005 WOS:000300922700009. 22341465

59. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7. doi: 10.1073/pnas.92.20.9363 7568133; PubMed Central PMCID: PMC40985.

60. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24(22):2463–79. doi: 10.1101/gad.1971610 21078816; PubMed Central PMCID: PMC2975923.

61. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68. doi: 10.1371/journal.pbio.0060301 19053174; PubMed Central PMCID: PMC2592359.

62. Golas G, Alonso JD, Toth Z. Characterization of de novo lytic infection of dermal lymphatic microvascular endothelial cells by Kaposi's sarcoma-associated herpesvirus. Virology. 2019;536:27–31. doi: 10.1016/j.virol.2019.07.028 31394409; PubMed Central PMCID: PMC6733618.

63. Chang HH, Ganem D. A unique herpesviral transcriptional program in KSHV-infected lymphatic endothelial cells leads to mTORC1 activation and rapamycin sensitivity. Cell Host Microbe. 2013;13(4):429–40. doi: 10.1016/j.chom.2013.03.009 23601105; PubMed Central PMCID: PMC3774835.

64. Schulz TF, Cesarman E. Kaposi Sarcoma-associated Herpesvirus: mechanisms of oncogenesis. Curr Opin Virol. 2015;14:116–28. doi: 10.1016/j.coviro.2015.08.016 26431609.

65. Weiss G, Shemer A, Trau H. The Koebner phenomenon: review of the literature. J Eur Acad Dermatol Venereol. 2002;16(3):241–8. doi: 10.1046/j.1473-2165.2002.00406.x 12195563.

66. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72. doi: 10.1016/j.ccr.2011.01.020 21316604; PubMed Central PMCID: PMC3060401.

67. Thornton SC, Mueller SN, Levine EM. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science. 1983;222(4624):623–5. doi: 10.1126/science.6635659 6635659.

68. Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235(4787):442–7. doi: 10.1126/science.2432664 2432664.

69. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem. 1989;58:575–606. doi: 10.1146/annurev.bi.58.070189.003043 2549857.

70. Ensoli B, Sturzl M. Kaposi's sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. Cytokine Growth Factor Rev. 1998;9(1):63–83. doi: 10.1016/s1359-6101(97)00037-3 9720757.

71. Ensoli B, Nakamura S, Salahuddin SZ, Biberfeld P, Larsson L, Beaver B, et al. AIDS-Kaposi's sarcoma-derived cells express cytokines with autocrine and paracrine growth effects. Science. 1989;243(4888):223–6. doi: 10.1126/science.2643161 2643161.

72. Ensoli B, Gendelman R, Markham P, Fiorelli V, Colombini S, Raffeld M, et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature. 1994;371(6499):674–80. doi: 10.1038/371674a0 7935812.

73. Samaniego F, Markham PD, Gallo RC, Ensoli B. Inflammatory cytokines induce AIDS-Kaposi's sarcoma-derived spindle cells to produce and release basic fibroblast growth factor and enhance Kaposi's sarcoma-like lesion formation in nude mice. J Immunol. 1995;154(7):3582–92. 7897237.

74. Dhahri D, Sato-Kusubata K, Ohki-Koizumi M, Nishida C, Tashiro Y, Munakata S, et al. Fibrinolytic crosstalk with endothelial cells expands murine mesenchymal stromal cells. Blood. 2016;128(8):1063–75. doi: 10.1182/blood-2015-10-673103 27283026.

75. Staudt MR, Kanan Y, Jeong JH, Papin JF, Hines-Boykin R, Dittmer DP. The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res. 2004;64(14):4790–9. doi: 10.1158/0008-5472.CAN-03-3835 15256448.

76. Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H, Renne R, et al. Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol. 1997;71(1):715–9. 8985403; PubMed Central PMCID: PMC191104.

77. Dittmer DP. Transcription profile of Kaposi's sarcoma-associated herpesvirus in primary Kaposi's sarcoma lesions as determined by real-time PCR arrays. Cancer Res. 2003;63(9):2010–5. 12727810.

78. Hosseinipour MC, Sweet KM, Xiong J, Namarika D, Mwafongo A, Nyirenda M, et al. Viral profiling identifies multiple subtypes of Kaposi's sarcoma. MBio. 2014;5(5):e01633–14. doi: 10.1128/mBio.01633-14 25249280; PubMed Central PMCID: PMC4173763.

79. Emuss V, Lagos D, Pizzey A, Gratrix F, Henderson SR, Boshoff C. KSHV manipulates Notch signaling by DLL4 and JAG1 to alter cell cycle genes in lymphatic endothelia. PLoS Pathog. 2009;5(10):e1000616. doi: 10.1371/journal.ppat.1000616 19816565; PubMed Central PMCID: PMC2751827.

80. Sodhi A, Chaisuparat R, Hu J, Ramsdell AK, Manning BD, Sausville EA, et al. The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell. 2006;10(2):133–43. doi: 10.1016/j.ccr.2006.05.026 16904612.

81. Austgen K, Oakes SA, Ganem D. Multiple defects, including premature apoptosis, prevent Kaposi's sarcoma-associated herpesvirus replication in murine cells. J Virol. 2012;86(3):1877–82. doi: 10.1128/JVI.06600-11 22130538; PubMed Central PMCID: PMC3264352.

82. Nikitin PA, Yan CM, Forte E, Bocedi A, Tourigny JP, White RE, et al. An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe. 2010;8(6):510–22. doi: 10.1016/j.chom.2010.11.004 21147465; PubMed Central PMCID: PMC3049316.

83. Li Y, Zhong C, Liu D, Yu W, Chen W, Wang Y, et al. Evidence for Kaposi Sarcoma Originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition. Cancer Res. 2018;78(1):230–45. Epub 2017/10/27. doi: 10.1158/0008-5472.CAN-17-1961 29066510; PubMed Central PMCID: PMC5754241.

84. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25(7):1737–45. doi: 10.1634/stemcells.2007-0054 17395768.

85. Werner S, Hofschneider PH, Heldin CH, Ostman A, Roth WK. Cultured Kaposi's sarcoma-derived cells express functional PDGF A-type and B-type receptors. Exp Cell Res. 1990;187(1):98–103. doi: 10.1016/0014-4827(90)90122-q 2153568.

86. Sturzl M, Roth WK, Brockmeyer NH, Zietz C, Speiser B, Hofschneider PH. Expression of platelet-derived growth factor and its receptor in AIDS-related Kaposi sarcoma in vivo suggests paracrine and autocrine mechanisms of tumor maintenance. Proc Natl Acad Sci U S A. 1992;89(15):7046–50. doi: 10.1073/pnas.89.15.7046 1323124; PubMed Central PMCID: PMC49642.

87. Khachigian LM, Fries JW, Benz MW, Bonthron DT, Collins T. Novel cis-acting elements in the human platelet-derived growth factor B-chain core promoter that mediate gene expression in cultured vascular endothelial cells. The Journal of biological chemistry. 1994;269(36):22647–56. 8077216.

88. Myoung J, Ganem D. Infection of lymphoblastoid cell lines by Kaposi's sarcoma-associated herpesvirus: critical role of cell-associated virus. J Virol. 2011;85(19):9767–77. doi: 10.1128/JVI.05136-11 21795352; PubMed Central PMCID: PMC3196463.

89. Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, et al. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog. 2014;10(1):e1003847. doi: 10.1371/journal.ppat.1003847 24453964; PubMed Central PMCID: PMC3894221.

90. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. doi: 10.1093/bioinformatics/btu170 24695404; PubMed Central PMCID: PMC4103590.

91. Brulois KF, Chang H, Lee AS, Ensser A, Wong LY, Toth Z, et al. Construction and manipulation of a new Kaposi's sarcoma-associated herpesvirus bacterial artificial chromosome clone. J Virol. 2012;86(18):9708–20. doi: 10.1128/JVI.01019-12 22740391; PubMed Central PMCID: PMC3446615.

92. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. doi: 10.1038/nmeth.1923 22388286; PubMed Central PMCID: PMC3322381.

93. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137. doi: 10.1186/gb-2008-9-9-r137 18798982; PubMed Central PMCID: PMC2592715.

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Halitóza
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#