Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls

Autoři: Ingrida Vendele aff001;  Janet A. Willment aff001;  Lisete M. Silva aff004;  Angelina S. Palma aff004;  Wengang Chai aff004;  Yan Liu aff004;  Ten Feizi aff004;  Maria Spyrou aff001;  Mark H. T. Stappers aff001;  Gordon D. Brown aff001;  Neil A. R. Gow aff001
Působiště autorů: MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom aff001;  Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom aff002;  School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom aff003;  Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom aff004;  UCIBIO, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal aff005
Vyšlo v časopise: Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathog 16(1): e32767. doi:10.1371/journal.ppat.1007927
Kategorie: Research Article


During the course of fungal infection, pathogen recognition by the innate immune system is critical to initiate efficient protective immune responses. The primary event that triggers immune responses is the binding of Pattern Recognition Receptors (PRRs), which are expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns (PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). However, the precise spatial distribution of the ligands that induce immune responses within the cell walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recognition domains (CRDs) 4–7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the β-1,3 glucan-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clustered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding discriminated between mannosides expressed on different cell morphologies of the same fungus. We also demonstrate CTL epitope differentiation during different phases of the growth cycle of Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2 labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical diversity, indicating that the triggering of immune recognition events originates from multiple physical origins at the fungal cell surface.

Klíčová slova:

Candida albicans – Cell binding – Cell walls – Fungal pathogens – Fungal structure – Pattern recognition receptors – Saccharomyces cerevisiae – Yeast


1. Low CY, Rotstein C. Emerging fungal infections in immunocompromised patients. F1000 medicine reports. 2011;3:14. doi: 10.3410/M3-14 21876720

2. Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. The Journal of Microbiology. 2011;49(2):171. doi: 10.1007/s12275-011-1064-7 21538235

3. Enoch DA, Ludlam HA, Brown NM. Invasive fungal infections: a review of epidemiology and management options. Journal of Medical Microbiology. 2006;55(7):809–18.

4. Deng Z, Kiyuna A, Hasegawa M, Nakasone I, Hosokawa A, Suzuki M. Oral candidiasis in patients receiving radiation therapy for head and neck cancer. Otolaryngology–Head and Neck Surgery. 2010;143(2):242–7. doi: 10.1016/j.otohns.2010.02.003 20647128

5. Armstrong-James D, Meintjes G, Brown GD. A neglected epidemic: fungal infections in HIV/AIDS. Trends in Microbiology. 2014;22(3):120–7. 24530175

6. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. The Lancet Infectious Diseases. 2017;17(8):873–81. 28483415

7. Brown GD. Innate Antifungal Immunity: The Key Role of Phagocytes. Annual Review of Immunology. 2011;29(1):1–21. doi: 10.1146/annurev-immunol-030409-101229 20936972

8. Becker KL, Ifrim DC, Quintin J, Netea MG, van de Veerdonk FL. Antifungal innate immunity: recognition and inflammatory networks. Seminars in Immunopathology. 2015;37(2):107–16. doi: 10.1007/s00281-014-0467-z 25527294

9. Erwig LP, Gow NAR. Interactions of fungal pathogens with phagocytes. Nature Reviews Microbiology. 2016;14:163. doi: 10.1038/nrmicro.2015.21 26853116

10. Miramón P, Kasper L, Hube B. Thriving within the host: Candida spp. interactions with phagocytic cells. Medical Microbiology and Immunology. 2013;202(3):183–95. doi: 10.1007/s00430-013-0288-z 23354731

11. Netea MG, Joosten LAB, van der Meer JWM, Kullberg B-J, van de Veerdonk FL. Immune defence against Candida fungal infections. Nature Reviews Immunology. 2015;15:630. doi: 10.1038/nri3897 26388329

12. Gow NAR, Netea MG. Medical mycology and fungal immunology: new research perspectives addressing a major world health challenge. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2016;371(1709):20150462. doi: 10.1098/rstb.2015.0462 28080988

13. Netea MG, Gow NAR, Munro CA, Bates S, Collins C, Ferwerda G, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. The Journal of Clinical Investigation. 2006;116(6):1642–50. doi: 10.1172/JCI27114 16710478

14. Latgé J-P. The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology. 2007;66(2):279–90. doi: 10.1111/j.1365-2958.2007.05872.x 17854405

15. Gow NAR, Latge J-P, Munro CA. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum. 2017;5(3). doi: 10.1128/microbiolspec.FUNK-0035-2016 28513415

16. Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. BioEssays. 2006;28(8):799–808. doi: 10.1002/bies.20441 16927300

17. Gow NAR, Hube B. Importance of the Candida albicans cell wall during commensalism and infection. Current Opinion in Microbiology. 2012;15(4):406–12. 22609181

18. Hall RA, Gow NAR. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Molecular Microbiology. 2013;90(6):1147–61. doi: 10.1111/mmi.12426 24125554

19. Kędzierska A, Kochan P, Pietrzyk A, Kędzierska J. Current status of fungal cell wall components in the immunodiagnostics of invasive fungal infections in humans: galactomannan, mannan and (1→3)-β-D-glucan antigens. European Journal of Clinical Microbiology & Infectious Diseases. 2007;26(11):755–66. doi: 10.1007/s10096-007-0373-6 17671803

20. Komarova BS, Wong SSW, Orekhova MV, Tsvetkov YE, Krylov VB, Beauvais A, et al. Chemical Synthesis and Application of Biotinylated Oligo-α-(1 → 3)-d-Glucosides To Study the Antibody and Cytokine Response against the Cell Wall α-(1 → 3)-d-Glucan of Aspergillus fumigatus. The Journal of Organic Chemistry. 2018;83(21):12965–76. doi: 10.1021/acs.joc.8b01142 30277398

21. Krylov VB, Solovev AS, Argunov DA, Latgé J-P, Nifantiev NE. Reinvestigation of carbohydrate specificity of EB-A2 monoclonal antibody used in the immune detection of Aspergillus fumigatus galactomannan. Heliyon. 2019;5(1):e01173–e. doi: 10.1016/j.heliyon.2019.e01173 30766929

22. Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NAR, et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cellular Microbiology. 2012;14(9):1319–35. doi: 10.1111/j.1462-5822.2012.01813.x 22587014

23. Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM, Gow NAR, et al. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS pathogens. 2012;8(3):e1002578–e. doi: 10.1371/journal.ppat.1002578 22438806

24. Lowman DW, Greene RR, Bearden DW, Kruppa MD, Pottier M, Monteiro MA, et al. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. The Journal of biological chemistry. 2014;289(6):3432–43. Epub 12/16. doi: 10.1074/jbc.M113.529131 24344127

25. Ballou ER, Avelar GM, Childers DS, Mackie J, Bain JM, Wagener J, et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nature microbiology. 2016;2:16238. doi: 10.1038/nmicrobiol.2016.238 27941860

26. Luo G, Ibrahim AS, Spellberg B, Nobile CJ, Mitchell AP, Fu Y. Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. The Journal of infectious diseases. 2010;201(11):1718–28. doi: 10.1086/652407 20415594

27. Sousa MdG, Reid DM, Schweighoffer E, Tybulewicz V, Ruland J, Langhorne J, et al. Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin. Cell host & microbe. 2011;9(5):436–43. doi: 10.1016/j.chom.2011.04.005 21575914

28. Rudkin FM, Raziunaite I, Workman H, Essono S, Belmonte R, MacCallum DM, et al. Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nat Commun. 2018;9(1):5288-. doi: 10.1038/s41467-018-07738-1 30538246

29. Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. The FEBS Journal. 2005;272(24):6179–217. doi: 10.1111/j.1742-4658.2005.05031.x 16336259

30. Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology. 2009;214(7):562–75. doi: 10.1016/j.imbio.2008.11.003 19261355

31. Kerrigan AM, Brown GD. Syk-coupled C-type lectins in immunity. Trends in Immunology. 2011;32(4):151–6. 21334257

32. Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Current Opinion in Immunology. 2015;32:21–7. 25553393

33. Tang J, Lin G, Langdon WY, Tao L, Zhang J. Regulation of C-Type Lectin Receptor-Mediated Antifungal Immunity. Frontiers in immunology. 2018;9:123-. doi: 10.3389/fimmu.2018.00123 29449845

34. Taylor ME, Drickamer K. Structural requirements for high affinity binding of complex ligands by the macrophage mannose receptor. Journal of Biological Chemistry. 1993;268(1):399–404. 8416946

35. Ariizumi K, Shen G-L, Shikano S, Xu S, Ritter R, Kumamoto T, et al. Identification of a Novel, Dendritic Cell-associated Molecule, Dectin-1, by Subtractive cDNA Cloning. Journal of Biological Chemistry. 2000;275(26):20157–67. doi: 10.1074/jbc.M909512199 10779524

36. Graham LM, Tsoni SV, Willment JA, Williams DL, Taylor PR, Gordon S, et al. Soluble Dectin-1 as a tool to detect β-glucans. Journal of Immunological Methods. 2006;314(1):164–9.

37. McGreal EP, Brown GD, Martinez-Pomares L, Rosas M, Taylor PR, Gordon S, et al. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology. 2006;16(5):422–30. doi: 10.1093/glycob/cwj077 16423983

38. Cambi A, Netea MG, Mora-Montes HM, Gow NAR, Hato SV, Lowman DW, et al. Dendritic Cell Interaction with Candida albicans Critically Depends on N-Linked Mannan. Journal of Biological Chemistry. 2008;283(29):20590–9. doi: 10.1074/jbc.M709334200 18482990

39. Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM, Asamaphan P, et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature. 2018;555:382. doi: 10.1038/nature25974 29489751

40. Stahl PD, Ezekowitz RAB. The mannose receptor is a pattern recognition receptor involved in host defense. Current Opinion in Immunology. 1998;10(1):50–5. 9523111

41. Smits GJ, Kapteyn JC, van den Ende H, Klis FM. Cell wall dynamics in yeast. Current Opinion in Microbiology. 1999;2(4):348–52. 10458981

42. Brown GD, Gordon S. A new receptor for β-glucans. Nature. 2001;413:36.

43. Domer JE. Candida Cell Wall Mannan: A Polysaccharide with Diverse Immunologic Properties. Critical Reviews in Microbiology. 1989;17(1):33–51. doi: 10.3109/10408418909105721 2669830

44. Shibata N, Suzuki A, Kobayashi H, Okawa Y. Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. The Biochemical journal. 2007;404(3):365–72. Epub 05/29. doi: 10.1042/BJ20070081 17331070

45. Tada H, Nemoto E, Shimauchi H, Watanabe T, Mikami T, Matsumoto T, et al. Saccharomyces cerevisiae- and Candida albicans-Derived Mannan Induced Production of Tumor Necrosis Factor Alpha by Human Monocytes in a CD14- and Toll-Like Receptor 4-Dependent Manner. Microbiology and Immunology. 2002;46(7):503–12. doi: 10.1111/j.1348-0421.2002.tb02727.x 12222939

46. Poulain D, Trinel P-A, Ibata-Ombetta S, Jouault T, Sacchetti P, Lefebvre P, et al. Candida albicans Phospholipomannan Is Sensed through Toll-Like Receptors. The Journal of Infectious Diseases. 2003;188(1):165–72. doi: 10.1086/375784 12825186

47. Cambi A, Gijzen K, de Vries IJM, Torensma R, Joosten B, Adema GJ, et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. European Journal of Immunology. 2003;33(2):532–8. doi: 10.1002/immu.200310029 12645952

48. Kohatsu L, Hsu DK, Jegalian AG, Liu F-T, Baum LG. Galectin-3 Induces Death of Candida Species Expressing Specific β-1,2-Linked Mannans. The Journal of Immunology. 2006;177(7):4718–26. doi: 10.4049/jimmunol.177.7.4718 16982911

49. Sato K, Yang X-l, Yudate T, Chung J-S, Wu J, Luby-Phelps K, et al. Dectin-2 Is a Pattern Recognition Receptor for Fungi That Couples with the Fc Receptor γ Chain to Induce Innate Immune Responses. Journal of Biological Chemistry. 2006;281(50):38854–66. doi: 10.1074/jbc.M606542200 17050534

50. Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(6):1897–902. Epub 01/26. doi: 10.1073/pnas.0805177106 19171887

51. Kullberg BJ, Verschueren I, van der Meer JWM, Joosten LAB, Netea MG, Gow NAR. Variable recognition of Candida albicans strains by TLR4 and lectin recognition receptors. Medical Mycology. 2010;48(7):897–903. doi: 10.3109/13693781003621575 20166865

52. Zhu L-L, Zhao X-Q, Jiang C, You Y, Chen X-P, Jiang Y-Y, et al. C-Type Lectin Receptors Dectin-3 and Dectin-2 Form a Heterodimeric Pattern-Recognition Receptor for Host Defense against Fungal Infection. Immunity. 2013;39(2):324–34. 23911656

53. Lionakis MS, Levitz SM. Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annual Review of Immunology. 2018;36(1):157–91. doi: 10.1146/annurev-immunol-042617-053318 29237128

54. Guo Y, Chang Q, Cheng L, Xiong S, Jia X, Lin X, et al. C-Type Lectin Receptor CD23 Is Required for Host Defense against Candida albicans and Aspergillus fumigatus Infection. The Journal of Immunology. 2018;201(8):2427. doi: 10.4049/jimmunol.1800620 30185519

55. Linehan SA, Martínez-Pomares L, Silva RPd, Gordon S. Endogenous ligands of carbohydrate recognition domains of the mannose receptor in murine macrophages, endothelial cells and secretory cells; potential relevance to inflammation and immunity. European Journal of Immunology. 2001;31(6):1857–66. doi: 10.1002/1521-4141(200106)31:6<1857::aid-immu1857>;2-d 11433382

56. Martínez-Pomares L, Kosco-Vilbois M, Darley E, Tree P, Herren S, Bonnefoy JY, et al. Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers. J Exp Med. 1996;184(5):1927–37. doi: 10.1084/jem.184.5.1927 8920880

57. Leteux C, Chai W, Loveless RW, Yuen CT, Uhlin-Hansen L, Combarnous Y, et al. The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewis(a) and Lewis(x) types in addition to the sulfated N-glycans of lutropin. The Journal of experimental medicine. 2000;191(7):1117–26. doi: 10.1084/jem.191.7.1117 10748230

58. Glittenberg MT, Silas S, MacCallum DM, Gow NAR, Ligoxygakis P. Wild-type Drosophila melanogaster as an alternative model system for investigating the pathogenicity of Candida albicans. Disease Models & Mechanisms. 2011;4(4):504–14. doi: 10.1242/dmm.006619 21540241

59. MacCallum DM, Castillo L, Nather K, Munro CA, Brown AJP, Gow NAR, et al. Property differences among the four major Candida albicans strain clades. Eukaryotic cell. 2009;8(3):373–87. Epub 01/16. doi: 10.1128/EC.00387-08 19151328

60. Brand A, MacCallum DM, Brown AJP, Gow NAR, Odds FC. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryotic cell. 2004;3(4):900–9. doi: 10.1128/EC.3.4.900-909.2004 15302823

61. Wheeler RT, Kombe D, Agarwala SD, Fink GR. Dynamic, Morphotype-Specific Candida albicans β-Glucan Exposure during Infection and Drug Treatment. PLOS Pathogens. 2008;4(12):e1000227. doi: 10.1371/journal.ppat.1000227 19057660

62. Malavia D, Lehtovirta-Morley LE, Alamir O, Weiß E, Gow NAR, Hube B, et al. Zinc Limitation Induces a Hyper-Adherent Goliath Phenotype in Candida albicans. Frontiers in Microbiology. 2017;8(2238). doi: 10.3389/fmicb.2017.02238 29184547

63. Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. The EMBO journal. 2005;24(6):1277–86. Epub 02/24. doi: 10.1038/sj.emboj.7600594 15729357

64. Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, Díaz-Rodríguez E, et al. Ligands for the β-Glucan Receptor, Dectin-1, Assigned Using “Designer” Microarrays of Oligosaccharide Probes (Neoglycolipids) Generated from Glucan Polysaccharides. Journal of Biological Chemistry. 2006;281(9):5771–9. doi: 10.1074/jbc.M511461200 16371356

65. Hobson RP, Munro CA, Bates S, MacCallum DM, Cutler JE, Heinsbroek SEM, et al. Loss of Cell Wall Mannosylphosphate in Candida albicans Does Not Influence Macrophage Recognition. Journal of Biological Chemistry. 2004;279(38):39628–35. doi: 10.1074/jbc.M405003200 15271989

66. Hall RA, Bates S, Lenardon MD, Maccallum DM, Wagener J, Lowman DW, et al. The Mnn2 mannosyltransferase family modulates mannoprotein fibril length, immune recognition and virulence of Candida albicans. PLoS pathogens. 2013;9(4):e1003276–e. doi: 10.1371/journal.ppat.1003276 23633946

67. Bates S, Hughes HB, Munro CA, Thomas WPH, MacCallum DM, Bertram G, et al. Outer Chain N-Glycans Are Required for Cell Wall Integrity and Virulence of Candida albicans. Journal of Biological Chemistry. 2006;281(1):90–8. doi: 10.1074/jbc.M510360200 16263704

68. Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, et al. Candida albicans Pmr1p, a Secretory Pathway P-type Ca2+/Mn2+-ATPase, Is Required for Glycosylation and Virulence. Journal of Biological Chemistry. 2005;280(24):23408–15. doi: 10.1074/jbc.M502162200 15843378

69. Feinberg H, Jégouzo SAF, Rex MJ, Drickamer K, Weis WI, Taylor ME. Mechanism of pathogen recognition by human dectin-2. The Journal of biological chemistry. 2017;292(32):13402–14. Epub 06/26. doi: 10.1074/jbc.M117.799080 28652405

70. Palma AS, Liu Y, Zhang H, Zhang Y, McCleary BV, Yu G, et al. Unravelling glucan recognition systems by glycome microarrays using the designer approach and mass spectrometry. Molecular & cellular proteomics: MCP. 2015;14(4):974–88. Epub 02/10. doi: 10.1074/mcp.M115.048272 25670804

71. Zhang H, Palma AS, Zhang Y, Childs RA, Liu Y, Mitchell DA, et al. Generation and characterization of β1,2-gluco-oligosaccharide probes from Brucella abortus cyclic β-glucan and their recognition by C-type lectins of the immune system. Glycobiology. 2016;26(10):1086–96. Epub 10/18. doi: 10.1093/glycob/cww041 27053576

72. Kang BK, Schlesinger LS. Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan. Infection and immunity. 1998;66(6):2769–77. 9596746

73. van Liempt E, Bank CMC, Mehta P, García-Vallejo JJ, Kawar ZS, Geyer R, et al. Specificity of DC-SIGN for mannose- and fucose-containing glycans. FEBS Letters. 2006;580(26):6123–31. doi: 10.1016/j.febslet.2006.10.009 17055489

74. Gow NAR, van de Veerdonk FL, Brown AJP, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nature Reviews Microbiology. 2011;10:112. doi: 10.1038/nrmicro2711 22158429

75. Grumaz C, Lorenz S, Stevens P, Lindemann E, Schöck U, Retey J, et al. Species and condition specific adaptation of the transcriptional landscapes in Candida albicans and Candida dubliniensis. BMC genomics. 2013;14:212-. doi: 10.1186/1471-2164-14-212 23547856

76. Marakalala MJ, Vautier S, Potrykus J, Walker LA, Shepardson KM, Hopke A, et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS pathogens. 2013;9(4):e1003315–e. doi: 10.1371/journal.ppat.1003315 23637604

77. Phan QT, Belanger PH, Filler SG. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infection and immunity. 2000;68(6):3485–90. doi: 10.1128/iai.68.6.3485-3490.2000 10816502

78. McKenzie CGJ, Koser U, Lewis LE, Bain JM, Mora-Montes HM, Barker RN, et al. Contribution of Candida albicans Cell Wall Components to Recognition by and Escape from Murine Macrophages. Infection and Immunity. 2010;78(4):1650–8. doi: 10.1128/IAI.00001-10 20123707

79. Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B. From Attachment to Damage: Defined Genes of Candida albicans Mediate Adhesion, Invasion and Damage during Interaction with Oral Epithelial Cells. PLOS ONE. 2011;6(2):e17046. doi: 10.1371/journal.pone.0017046 21407800

80. Bain JM, Louw J, Lewis LE, Okai B, Walls CA, Ballou ER, et al. Candida albicans Hypha Formation and Mannan Masking of β-Glucan Inhibit Macrophage Phagosome Maturation. mBio. 2014;5(6):e01874–14. doi: 10.1128/mBio.01874-14 25467440

81. Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64–8. Epub 03/30. doi: 10.1038/nature17625 27027296

82. Lee SJ, Zheng N-Y, Clavijo M, Nussenzweig MC. Normal Host Defense during Systemic Candidiasis in Mannose Receptor-Deficient Mice. Infection and Immunity. 2003;71(1):437. doi: 10.1128/IAI.71.1.437-445.2003 12496194

83. Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends in Microbiology. 2004;12(7):317–24. 15223059

84. da Silva Dantas A, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B, et al. Cell biology of Candida albicans-host interactions. Current opinion in microbiology. 2016;34:111–8. doi: 10.1016/j.mib.2016.08.006 27689902

85. Gow NAR, Yadav B. Microbe Profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans. Microbiology. 2017;163(8):1145–7. doi: 10.1099/mic.0.000499 28809155

86. Mukaremera L, Lee KK, Mora-Montes HM, Gow NAR. Candida albicans Yeast, Pseudohyphal, and Hyphal Morphogenesis Differentially Affects Immune Recognition. Frontiers in Immunology. 2017;8(629). doi: 10.3389/fimmu.2017.00629 28638380

87. Lin J, Wester MJ, Graus MS, Lidke KA, Neumann AK. Nanoscopic cell-wall architecture of an immunogenic ligand in Candida albicans during antifungal drug treatment. Molecular biology of the cell. 2016;27(6):1002–14. doi: 10.1091/mbc.E15-06-0355 26792838

88. Maxfield FR. Plasma membrane microdomains. Current Opinion in Cell Biology. 2002;14(4):483–7. 12383800

89. Laude AJ, Prior IA. Plasma membrane microdomains: organization, function and trafficking. Molecular membrane biology. 2004;21(3):193–205. doi: 10.1080/09687680410001700517 15204627

90. Lipke PN, Klotz SA, Dufrene YF, Jackson DN, Garcia-Sherman MC. Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiology and molecular biology reviews: MMBR. 2017;82(1):e00035–17. doi: 10.1128/MMBR.00035-17 29187516

91. Merson-Davies LA, Odds FC. A Morphology Index for Characterization of Cell Shape in Candida albicans. Microbiology. 1989;135(11):3143–52. doi: 10.1099/00221287-135-11-3143 2693594

92. Palma AS, Liu Y, Childs RA, Herbert C, Wang D, Chai W, et al. The human epithelial carcinoma antigen recognized by monoclonal antibody AE3 is expressed on a sulfoglycolipid in addition to neoplastic mucins. Biochem Biophys Res Commun. 2011;408(4):548–52. Epub 04/19. doi: 10.1016/j.bbrc.2011.04.055 21527252

93. Liu Y, McBride R, Stoll M, Palma AS, Silva L, Agravat S, et al. The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Glycobiology. 2016;27(4):280–4. doi: 10.1093/glycob/cww118 27993942

94. Tavanti A, Davidson AD, Gow NAR, Maiden MCJ, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. Journal of clinical microbiology. 2005;43(1):284–92. doi: 10.1128/JCM.43.1.284-292.2005 15634984

Článek vyšel v časopise

PLOS Pathogens

2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se