Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency
Autoři:
Federica Diofano aff001; Karolina Weinmann aff001; Isabelle Schneider aff001; Kevin D. Thiessen aff001; Wolfgang Rottbauer aff002; Steffen Just aff001
Působiště autorů:
Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
aff001; Department of Internal Medicine II, University of Ulm, Ulm, Germany
aff002
Vyšlo v časopise:
Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency. PLoS Genet 16(11): e1009088. doi:10.1371/journal.pgen.1009088
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009088
Souhrn
Mutations in the molecular co-chaperone Bcl2-associated athanogene 3 (BAG3) are found to cause dilated cardiomyopathy (DCM), resulting in systolic dysfunction and heart failure, as well as myofibrillar myopathy (MFM), which is characterized by protein aggregation and myofibrillar disintegration in skeletal muscle cells. Here, we generated a CRISPR/Cas9-induced Bag3 knockout zebrafish line and found the complete preservation of heart and skeletal muscle structure and function during embryonic development, in contrast to morpholino-mediated knockdown of Bag3. Intriguingly, genetic compensation, a process of transcriptional adaptation which acts independent of protein feedback loops, was found to prevent heart and skeletal muscle damage in our Bag3 knockout model. Proteomic profiling and quantitative real-time PCR analyses identified Bag2, another member of the Bag protein family, significantly upregulated on a transcript and protein level in bag3-/- mutants. This implied that the decay of bag3 mutant mRNA in homozygous bag3-/- embryos caused the transcriptional upregulation of bag2 expression. We further demonstrated that morpholino-mediated knockdown of Bag2 in bag3-/- embryos evoked severe functional and structural heart and skeletal muscle defects, which are similar to Bag3 morphants. However, Bag2 knockdown in bag3+/+ or bag3+/- embryos did not result in (cardio-)myopathy. Finally, we found that inhibition of the nonsense-mediated mRNA decay (NMD) machinery by knockdown of upf1, an essential NMD factor, caused severe heart and skeletal muscle defects in bag3-/- mutants due to the blockade of transcriptional adaptation of bag2 expression. Our findings provide evidence that genetic compensation might vitally influence the penetrance of disease-causing bag3 mutations in vivo.
Klíčová slova:
Heart – Analysis of variance – Embryos – Genetics – Messenger RNA – Phenotypes – Skeletal muscles – Zebrafish
Zdroje
1. El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Gunther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568(7751):193–7. Epub 2019/04/05. doi: 10.1038/s41586-019-1064-z 30944477; PubMed Central PMCID: PMC6707827.
2. El-Brolosy MA, Stainier DYR. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 2017;13(7):e1006780. Epub 2017/07/14. doi: 10.1371/journal.pgen.1006780 28704371; PubMed Central PMCID: PMC5509088.
3. Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524(7564):230–3. Epub 2015/07/13. doi: 10.1038/nature14580 26168398.
4. Sztal TE, McKaige EA, Williams C, Ruparelia AA, Bryson-Richardson RJ. Genetic compensation triggered by actin mutation prevents the muscle damage caused by loss of actin protein. PLoS Genet. 2018;14(2):e1007212. Epub 2018/02/08. doi: 10.1371/journal.pgen.1007212 29420541; PubMed Central PMCID: PMC5821405.
5. Sturner E, Behl C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front Mol Neurosci. 2017;10:177. Epub 2017/07/07. doi: 10.3389/fnmol.2017.00177 28680391; PubMed Central PMCID: PMC5478690.
6. Klimek C, Kathage B, Wordehoff J, Hohfeld J. BAG3-mediated proteostasis at a glance. J Cell Sci. 2017;130(17):2781–8. Epub 2017/08/16. doi: 10.1242/jcs.203679 28808089.
7. Behl C. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease. Trends Pharmacol Sci. 2016;37(8):672–88. Epub 2016/05/06. doi: 10.1016/j.tips.2016.04.007 27162137.
8. Feldman AM, Begay RL, Knezevic T, Myers VD, Slavov DB, Zhu W, et al. Decreased levels of BAG3 in a family with a rare variant and in idiopathic dilated cardiomyopathy. J Cell Physiol. 2014;229(11):1697–702. Epub 2014/03/14. doi: 10.1002/jcp.24615 24623017; PubMed Central PMCID: PMC4296028.
9. Norton N, Li D, Rieder MJ, Siegfried JD, Rampersaud E, Züchner S, et al. Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am J Hum Genet. 2011;88(3):273–82. Epub 2011/02/25. doi: 10.1016/j.ajhg.2011.01.016 21353195; PubMed Central PMCID: PMC3059419.
10. Ruparelia AA, Oorschot V, Vaz R, Ramm G, Bryson-Richardson RJ. Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol. 2014;128(6):821–33. Epub 2014/10/02. doi: 10.1007/s00401-014-1344-5 25273835.
11. Buhrdel JB, Hirth S, Kessler M, Westphal S, Forster M, Manta L, et al. In vivo characterization of human myofibrillar myopathy genes in zebrafish. Biochemical and biophysical research communications. 2015;461(2):217–23. doi: 10.1016/j.bbrc.2015.03.149 25866181.
12. Villard E, Perret C, Gary F, Proust C, Dilanian G, Hengstenberg C, et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J. 2011;32(9):1065–76. Epub 2011/04/01. doi: 10.1093/eurheartj/ehr105 21459883; PubMed Central PMCID: PMC3086901.
13. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. Epub 2013/04/17. doi: 10.1038/nature12111 23594743; PubMed Central PMCID: PMC3703927.
14. Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature. 2013;496(7446):494–7. Epub 2013/04/17. doi: 10.1038/nature11992 23594742; PubMed Central PMCID: PMC3743023.
15. Homma S, Iwasaki M, Shelton GD, Engvall E, Reed JC, Takayama S. BAG3 deficiency results in fulminant myopathy and early lethality. Am J Pathol. 2006;169(3):761–73. doi: 10.2353/ajpath.2006.060250 16936253; PubMed Central PMCID: PMC1698816.
16. Smith LL, Beggs AH, Gupta VA. Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp. 2013;(82):e50925. Epub 2013/12/13. doi: 10.3791/50925 24378748; PubMed Central PMCID: PMC4048356.
17. Ding Y, Dvornikov AV, Ma X, Zhang H, Wang Y, Lowerison M, et al. Haploinsufficiency of mechanistic target of rapamycin ameliorates bag3 cardiomyopathy in adult zebrafish. Dis Model Mech. 2019. Epub 2019/09/08. doi: 10.1242/dmm.040154 31492659.
18. Ruparelia AA, Oorschot V, Ramm G, Bryson-Richardson RJ. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25(11):2131–42. Epub 2016/10/30. doi: 10.1093/hmg/ddw080 26969713.
19. Thisse B, Thisse C. Fast Release Clones: A High Throughput Expression Analysis. ZFIN Direct Data Submission. (http://zfin.org).2004.
20. Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol. 2015;16(11):665–77. Epub 2015/09/23. doi: 10.1038/nrm4063 26397022.
21. Akimitsu N. Messenger RNA surveillance systems monitoring proper translation termination. J Biochem. 2008;143(1):1–8. Epub 2007/11/01. doi: 10.1093/jb/mvm204 17981821.
22. Ma Z, Zhu P, Shi H, Guo L, Zhang Q, Chen Y, et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature. 2019;568(7751):259–63. Epub 2019/04/03. doi: 10.1038/s41586-019-1057-y 30944473.
23. Peng J. Gene redundancy and gene compensation: An updated view. J Genet Genomics. 2019;46(7):329–33. Epub 2019/07/19. doi: 10.1016/j.jgg.2019.07.001 31377237.
24. Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol. 2019;20(7):406–20. doi: 10.1038/s41580-019-0126-2 30992545; PubMed Central PMCID: PMC6855384.
25. Domínguez F, Cuenca S, Bilińska Z, Toro R, Villard E, Barriales-Villa R, et al. Dilated Cardiomyopathy Due to BLC2-Associated Athanogene 3 (BAG3) Mutations. J Am Coll Cardiol. 2018;72(20):2471–81. doi: 10.1016/j.jacc.2018.08.2181 30442290; PubMed Central PMCID: PMC6688826.
26. Franaszczyk M, Bilinska ZT, Sobieszczańska-Małek M, Michalak E, Sleszycka J, Sioma A, et al. The BAG3 gene variants in Polish patients with dilated cardiomyopathy: four novel mutations and a genotype-phenotype correlation. J Transl Med. 2014;12:192. Epub 2014/07/09. doi: 10.1186/1479-5876-12-192 25008357; PubMed Central PMCID: PMC4105391.
27. Chami N, Tadros R, Lemarbre F, Lo KS, Beaudoin M, Robb L, et al. Nonsense mutations in BAG3 are associated with early-onset dilated cardiomyopathy in French Canadians. Can J Cardiol. 2014;30(12):1655–61. Epub 2014/10/02. doi: 10.1016/j.cjca.2014.09.030 25448463.
28. Fang X, Bogomolovas J, Wu T, Zhang W, Liu C, Veevers J, et al. Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy. J Clin Invest. 2017;127(8):3189–200. Epub 2017/07/24. doi: 10.1172/JCI94310 28737513; PubMed Central PMCID: PMC5531406.
29. Brooks SS, Wall AL, Golzio C, Reid DW, Kondyles A, Willer JR, et al. A novel ribosomopathy caused by dysfunction of RPL10 disrupts neurodevelopment and causes X-linked microcephaly in humans. Genetics. 2014;198(2):723–33. Epub 2014/10/16. doi: 10.1534/genetics.114.168211 25316788; PubMed Central PMCID: PMC4196623.
30. Qin L, Guo J, Zheng Q, Zhang H. BAG2 structure, function and involvement in disease. Cell Mol Biol Lett. 2016;21:18. Epub 2016/09/20. doi: 10.1186/s11658-016-0020-2 28536620; PubMed Central PMCID: PMC5415834.
31. Chen R, Shi L, Hakenberg J, Naughton B, Sklar P, Zhang J, et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat Biotechnol. 2016;34(5):531–8. Epub 2016/04/12. doi: 10.1038/nbt.3514 27065010.
32. Narasimhan VM, Hunt KA, Mason D, Baker CL, Karczewski KJ, Barnes MR, et al. Health and population effects of rare gene knockouts in adult humans with related parents. Science. 2016;352(6284):474–7. Epub 2016/03/05. doi: 10.1126/science.aac8624 26940866; PubMed Central PMCID: PMC4985238.
33. Sulem P, Helgason H, Oddson A, Stefansson H, Gudjonsson SA, Zink F, et al. Identification of a large set of rare complete human knockouts. Nat Genet. 2015;47(5):448–52. Epub 2015/03/26. doi: 10.1038/ng.3243 25807282.
34. Rottbauer W, Just S, Wessels G, Trano N, Most P, Katus HA, et al. VEGF-PLCgamma1 pathway controls cardiac contractility in the embryonic heart. Genes & development. 2005;19(13):1624–34. doi: 10.1101/gad.1319405 15998812; PubMed Central PMCID: PMC1172067.
35. Just S, Hirth S, Berger IM, Fishman MC, Rottbauer W. The mediator complex subunit Med10 regulates heart valve formation in zebrafish by controlling Tbx2b-mediated Has2 expression and cardiac jelly formation. Biochemical and biophysical research communications. 2016;477(4):581–8. doi: 10.1016/j.bbrc.2016.06.088 27343557.
36. Hirth S, Buhler A, Buhrdel JB, Rudeck S, Dahme T, Rottbauer W, et al. Paxillin and Focal Adhesion Kinase (FAK) Regulate Cardiac Contractility in the Zebrafish Heart. PloS one. 2016;11(3):e0150323. doi: 10.1371/journal.pone.0150323 26954676; PubMed Central PMCID: PMC4782988.
37. Gross A, Kracher B, Kraus JM, Kuhlwein SD, Pfister AS, Wiese S, et al. Representing dynamic biological networks with multi-scale probabilistic models. Commun Biol. 2019;2:21. Epub 2019/01/25. doi: 10.1038/s42003-018-0268-3 30675519; PubMed Central PMCID: PMC6336720.
38. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. Epub 2008/11/26. doi: 10.1038/nbt.1511 19029910.
39. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–805. Epub 2011/01/25. doi: 10.1021/pr101065j 21254760.
40. Meder B, Just S, Vogel B, Rudloff J, Gartner L, Dahme T, et al. JunB-CBFbeta signaling is essential to maintain sarcomeric Z-disc structure and when defective leads to heart failure. J Cell Sci. 2010;123(Pt 15):2613–20. Epub 2010/07/08. doi: 10.1242/jcs.067967 20605922.
41. Molt S, Buhrdel JB, Yakovlev S, Schein P, Orfanos Z, Kirfel G, et al. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. J Cell Sci. 2014;127(Pt 16):3578–92. doi: 10.1242/jcs.152157 24963132.
42. Kustermann M, Manta L, Paone C, Kustermann J, Lausser L, Wiesner C, et al. Loss of the novel Vcp (valosin containing protein) interactor Washc4 interferes with autophagy-mediated proteostasis in striated muscle and leads to myopathy in vivo. Autophagy. 2018;14(11):1911–27. Epub 2018/07/17. doi: 10.1080/15548627.2018.1491491 30010465; PubMed Central PMCID: PMC6152520.
43. Slijkerman R, Goloborodko A, Broekman S, de Vrieze E, Hetterschijt L, Peters T, et al. Poor Splice-Site Recognition in a Humanized Zebrafish Knockin Model for the Recurrent Deep-Intronic c.7595-2144A>G Mutation in USH2A. Zebrafish. 2018;15(6):597–609. Epub 2018/10/03. doi: 10.1089/zeb.2018.1613 30281416.
44. Wittkopp N, Huntzinger E, Weiler C, Saulière J, Schmidt S, Sonawane M, et al. Nonsense-mediated mRNA decay effectors are essential for zebrafish embryonic development and survival. Mol Cell Biol. 2009;29(13):3517–28. Epub 2009/05/04. doi: 10.1128/MCB.00177-09 19414594; PubMed Central PMCID: PMC2698750.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 11
- Nová zbraň v boji s multirezistentními bakteriemi?
- Léty ověřený ambroxol usnadňuje vykašlávání a zmírňuje kašel
- Aktuální poznatky k roli a možnostem ambroxolu v terapii bronchopulmonálních onemocnění
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Vitamin D2 může pomoci v rané fázi diabetu 1. typu
Nejčtenější v tomto čísle
- Stability of SARS-CoV-2 phylogenies
- Formal commentary
- No association between SCN9A and monogenic human epilepsy disorders
- Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis