Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition


Autoři: Esther A. Epum aff001;  Michael J. Mohan aff001;  Nicholas P. Ruppe aff001;  Katherine L. Friedman aff001
Působiště autorů: Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America aff001
Vyšlo v časopise: Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition. PLoS Genet 16(2): e32767. doi:10.1371/journal.pgen.1008608
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008608

Souhrn

DNA double-strand breaks (DSBs) are toxic forms of DNA damage that must be repaired to maintain genome integrity. Telomerase can act upon a DSB to create a de novo telomere, a process that interferes with normal repair and creates terminal deletions. We previously identified sequences in Saccharomyces cerevisiae (SiRTAs; Sites of Repair-associated Telomere Addition) that undergo unusually high frequencies of de novo telomere addition, even when the original chromosome break is several kilobases distal to the eventual site of telomerase action. Association of the single-stranded telomere binding protein Cdc13 with a SiRTA is required to stimulate de novo telomere addition. Because extensive resection must occur prior to Cdc13 binding, we utilized these sites to monitor the effect of proteins involved in homologous recombination. We find that telomere addition is significantly reduced in the absence of the Rad51 recombinase, while loss of Rad52, required for Rad51 nucleoprotein filament formation, has no effect. Deletion of RAD52 suppresses the defect of the rad51Δ strain, suggesting that Rad52 inhibits de novo telomere addition in the absence of Rad51. The ability of Rad51 to counteract this effect of Rad52 does not require DNA binding by Rad51, but does require interaction between the two proteins, while the inhibitory effect of Rad52 depends on its interaction with Replication Protein A (RPA). Intriguingly, the genetic interactions we report between RAD51 and RAD52 are similar to those previously observed in the context of checkpoint adaptation. Forced recruitment of Cdc13 fully restores telomere addition in the absence of Rad51, suggesting that Rad52, through its interaction with RPA-coated single-stranded DNA, inhibits the ability of Cdc13 to bind and stimulate telomere addition. Loss of the Rad51-Rad52 interaction also stimulates a subset of Rad52-dependent microhomology-mediated repair (MHMR) events, consistent with the known ability of Rad51 to prevent single-strand annealing.

Klíčová slova:

DNA-binding proteins – Chromosomal translocations – Polymerase chain reaction – Recombinase polymerase amplification – Telomeres – Yeast – Chromosomal deletions – Nucleoproteins


Zdroje

1. Wellinger RJ, Zakian VA. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics. 2012;191(4):1073–105. doi: 10.1534/genetics.111.137851 22879408

2. Osterhage JL, Friedman KL. Chromosome end maintenance by telomerase. J Biol Chem. 2009;284(24):16061–5. doi: 10.1074/jbc.R900011200 19286666

3. Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol. 2014;6(9):a016428. doi: 10.1101/cshperspect.a016428 25104768

4. Aylon Y, Kupiec M. DSB repair: the yeast paradigm. DNA Repair (Amst). 2004;3(8–9):797–815. https://doi.org/10.1016/j.dnarep.2004.04.013 15279765

5. Brill SJ, Stillman B. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev. 1991;5(9):1589–600. doi: 10.1101/gad.5.9.1589 1885001

6. Wang X, Haber JE. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol. 2004;2(1):E21. doi: 10.1371/journal.pbio.0020021 14737196

7. Sugiyama T, Kowalczykowski SC. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem. 2002;277(35):31663–72. doi: 10.1074/jbc.M203494200 12077133

8. New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature. 1998;391(6665):407–10. doi: 10.1038/34950 9450760

9. Sung P, Krejci L, Van Komen S, Sehorn MG. Rad51 recombinase and recombination mediators. J Biol Chem. 2003;278(44):42729–32. doi: 10.1074/jbc.R300027200 12912992

10. Mortensen UH, Bendixen C, Sunjevaric I, Rothstein R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci U S A. 1996;93(20):10729–34. doi: 10.1073/pnas.93.20.10729 8855248

11. Sugiyama T, New JH, Kowalczykowski SC. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci U S A. 1998;95(11):6049–54. doi: 10.1073/pnas.95.11.6049 9600915

12. McVey M, Lee SE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 2008;24(11):529–38. doi: 10.1016/j.tig.2008.08.007 18809224

13. Kramara J, Osia B, Malkova A. Break-Induced Replication: The where, the why, and the how. Trends Genet. 2018;34(7):518–31. doi: 10.1016/j.tig.2018.04.002 29735283

14. Verma P, Greenberg RA. Noncanonical views of homology-directed DNA repair. Genes Dev. 2016;30(10):1138–54. doi: 10.1101/gad.280545.116 27222516

15. Putnam CD, Pennaneach V, Kolodner RD. Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2004;101(36):13262–7. doi: 10.1073/pnas.0405443101 15328403

16. Putnam CD, Kolodner RD. Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics. 2017;206(3):1187–225. doi: 10.1534/genetics.112.145805 28684602

17. Myung K, Chen C, Kolodner RD. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature. 2001;411(6841):1073–6. doi: 10.1038/35082608 11429610

18. Zhang W, Durocher D. De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks. Genes Dev. 2010;24(5):502–15. doi: 10.1101/gad.1869110 20194442

19. Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 2003;17(19):2384–95. doi: 10.1101/gad.1125903 12975323

20. Obodo UC, Epum EA, Platts MH, Seloff J, Dahlson NA, Velkovsky SM, et al. Endogenous hot spots of de novo telomere addition in the yeast genome contain proximal enhancers that bind Cdc13. Mol Cell Biol. 2016;36(12):1750–63. doi: 10.1128/MCB.00095-16 27044869

21. Singer M, Gottschling D. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science. 1994;266(5184):404–9. doi: 10.1126/science.7545955 7545955

22. Pennock E, Buckley K, Lundblad V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell. 2001;104(3):387–96. doi: 10.1016/s0092-8674(01)00226-4 11239396

23. Evans SK, Lundblad V. Est1 and Cdc13 as comediators of telomerase access. Science. 1999;286(5437):117–20. doi: 10.1126/science.286.5437.117 10506558

24. Bianchi A, Negrini S, Shore D. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol Cell. 2004;16(1):139–46. doi: 10.1016/j.molcel.2004.09.009 15469829

25. Nugent CI, Hughes TR, Lue NF, Lundblad V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science. 1996;274(5285):249–52. doi: 10.1126/science.274.5285.249 8824190

26. Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 2009;23(8):912–27. doi: 10.1101/gad.1782209 19390086

27. Makovets S, Blackburn EH. DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol. 2009;11(11):1383–6. doi: 10.1038/ncb1985 19838171

28. Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. Elife. 2017;6. https://doi.org/10.7554/eLife.23783 28826474

29. Lydeard JR, Lipkin-Moore Z, Jain S, Eapen V V., Haber JE. Sgs1 and Exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends. PLoS Genet. 2010;6(5):25. https://doi.org/10.1371/journal.pgen.1000973 20523895

30. Teste M-A, François JM, Parrou J-L. Characterization of a new multigene family encoding isomaltases in the yeast Saccharomyces cerevisiae, the IMA family. J Biol Chem. 2010;285(35):26815–24. doi: 10.1074/jbc.M110.145946 20562106

31. Bai Y, Symington LS. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 1996;10(16):2025–37. doi: 10.1101/gad.10.16.2025 8769646

32. Sugawara N, Ira G, Haber JE. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol. 2000;20(14):5300–9. doi: 10.1128/mcb.20.14.5300-5309.2000 10866686

33. Jablonovich Z, Liefshitz B, Steinlauf R, Kupiec M. Characterization of the role played by the RAD59 gene of Saccharomyces cerevisiae in ectopic recombination. Curr Genet. 1999;36(1–2):13–20. doi: 10.1007/s002940050467 10447590

34. Signon L, Malkova A, Naylor ML, Klein H, Haber JE. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol. 2001;21(6):2048–56. doi: 10.1128/MCB.21.6.2048-2056.2001 11238940

35. Gerik KJ, Li X, Pautz A, Burgers PMJ. Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase δ. J Biol Chem. 1998;273(31):19747–55. doi: 10.1074/jbc.273.31.19747 9677405

36. Villarreal DD, Lee K, Deem A, Shim EY, Malkova A, Lee SE. Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet. 2012;8(11):e1003026. doi: 10.1371/journal.pgen.1003026 23144625

37. Lydeard JR, Jain S, Yamaguchi M, Haber JE. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature. 2007;448(7155):820–3. doi: 10.1038/nature06047 17671506

38. Sung P, Stratton SA. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J Biol Chem. 1996;271(45):27983–6. doi: 10.1074/jbc.271.45.27983 8910403

39. Lee SE, Pellicioli A, Vaze MB, Sugawara N, Malkova A, Foiani M, et al. Yeast Rad52 and Rad51 recombination proteins define a second pathway of DNA damage assessment in response to a single double-strand break. Mol Cell Biol. 2003;23(23):8913–23. doi: 10.1128/MCB.23.23.8913-8923.2003 14612428

40. Fung CW, Fortin GS, Peterson SE, Symington LS. The rad51-K191R ATPase-defective mutant Is impaired for presynaptic filament formation. Mol Cell Biol. 2006;26(24):9544–54. doi: 10.1128/MCB.00599-06 17030607

41. Krejci L, Damborsky J, Thomsen B, Duno M, Bendixen C. Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol Cell Biol. 2001;21(3):966–76. doi: 10.1128/MCB.21.3.966-976.2001 11154282

42. Seong C, Colavito S, Kwon Y, Sung P, Krejci L. Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase. J Biol Chem. 2009;284(36):24363–71. doi: 10.1074/jbc.M109.032953 19605344

43. Krejci L, Song B, Bussen W, Rothstein R, Mortensen UH, Sung P. Interaction with Rad51 is indispensable for recombination mediator function of Rad52. J Biol Chem. 2002;277(42):40132–41. doi: 10.1074/jbc.M206511200 12171935

44. Lee SE, Pellicioli A, Malkova A, Foiani M, Haber JE. The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Curr Biol. 2001;11(13):1053–7. doi: 10.1016/s0960-9822(01)00296-2 11470411

45. Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell. 1998;94(3):399–409. doi: 10.1016/s0092-8674(00)81482-8 9708741

46. Ouenzar F, Lalonde M, Laprade H, Morin G, Gallardo F, Tremblay-Belzile S, et al. Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage. J Cell Biol. 2017;216(8):2355–71. doi: 10.1083/jcb.201610071 28637749

47. Miyazaki T, Bressan DA, Shinohara M, Haber JE, Shinohara A. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J. 2004;23(4):939–49. doi: 10.1038/sj.emboj.7600091 14765116

48. Firmenich AA, Elias-Arnanz M, Berg P. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52. Mol Cell Biol. 1995;15(3):1620–31. doi: 10.1128/mcb.15.3.1620 7862153

49. Hays SL, Firmenich AA, Massey P, Banerjee R, Berg P. Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol Cell Biol. 1998;18(7):4400–6. doi: 10.1128/mcb.18.7.4400 9632824

50. Chen C, Umezu K, Kolodner RD. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell. 1998;2(1):9–22. doi: 10.1016/s1097-2765(00)80109-4 9702187

51. Gibb B, Ye LF, Kwon Y, Niu H, Sung P, Greene EC. Protein dynamics during presynaptic complex assembly on individual ssDNA molecules. Nat Struct Mol Biol. 2014;21(10):893. doi: 10.1038/nsmb.2886 25195049

52. Gibb B, Ye LF, Gergoudis SC, Kwon Y, Niu H, Sung P, et al. Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging. PLoS One. 2014;9(2):e87922. doi: 10.1371/journal.pone.0087922 24498402

53. Deng SK, Gibb B, de Almeida MJ, Greene EC, Symington LS. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol. 2014;21(4):405–12. doi: 10.1038/nsmb.2786 24608368

54. Sugiyama T, Kantake N. Dynamic regulatory interactions of Rad51, Rad52, and Replication Protein-A in recombination intermediates. J Mol Biol. 2009;390(1):45–55. doi: 10.1016/j.jmb.2009.05.009 19445949

55. Malkova A, Signon L, Schaefer CB, Naylor ML, Theis JF, Newlon CS, et al. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev. 2001;15(9):1055–60. doi: 10.1101/gad.875901 11331601

56. Anand R, Memisoglu G, Haber J. Cas9-mediated gene editing in Saccharomyces cerevisiae. Protoc Exch. 2017.

57. Radford A. Methods in yeast genetics—A laboratory course manual. Biochem Educ. 1991;19(2):101–2.

58. Cock PJA, Chilton JM, Grüning B, Johnson JE, Soranzo N. NCBI BLAST+ integrated into Galaxy. Gigascience. 2015;4(1):39. https://doi.org/10.1186/s13742-015-0080-7 26336600

59. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421. https://doi.org/10.1186/1471-2105-10-421 20003500

60. Sugawara N, Wang X, Haber JE. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell. 2003;12(1):209–19. doi: 10.1016/s1097-2765(03)00269-7 12887906

61. Tsukuda T, Trujillo KM, Martini E, Osley MA. Analysis of chromatin remodeling during formation of a DNA double-strand break at the yeast mating type locus. Methods. 2009;48(1):40–5. doi: 10.1016/j.ymeth.2009.02.007 19245836


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 2

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se