Magnetic genes: Studying the genetics of biomineralization in magnetotactic bacteria

Autoři: Hayley C. McCausland aff001;  Arash Komeili aff001
Působiště autorů: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America aff001;  Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America aff002
Vyšlo v časopise: Magnetic genes: Studying the genetics of biomineralization in magnetotactic bacteria. PLoS Genet 16(2): e32767. doi:10.1371/journal.pgen.1008499
Kategorie: Review


Many species of bacteria can manufacture materials on a finer scale than those that are synthetically made. These products are often produced within intracellular compartments that bear many hallmarks of eukaryotic organelles. One unique and elegant group of organisms is at the forefront of studies into the mechanisms of organelle formation and biomineralization. Magnetotactic bacteria (MTB) produce organelles called magnetosomes that contain nanocrystals of magnetic material, and understanding the molecular mechanisms behind magnetosome formation and biomineralization is a rich area of study. In this Review, we focus on the genetics behind the formation of magnetosomes and biomineralization. We cover the history of genetic discoveries in MTB and key insights that have been found in recent years and provide a perspective on the future of genetic studies in MTB.

Klíčová slova:

Biomineralization – Cellular structures and organelles – Genetics – Genomics – Mycobacterium tuberculosis – Operons – Transmission electron microscopy – Tuberculosis drug discovery


1. Grant CR, Wan J, Komeili A. Organelle Formation in Bacteria and Archaea. Annu Rev Cell Dev Biol. 2018 Oct 6;34(1):217–38.

2. Rahn-Lee L, Komeili A. The magnetosome model: insights into the mechanisms of bacterial biomineralization. Front Microbiol. 2013;4.

3. Lefèvre CT, Bazylinski DA. Ecology, Diversity, and Evolution of Magnetotactic Bacteria. Microbiol Mol Biol Rev MMBR. 2013 Sep;77(3):497–526. doi: 10.1128/MMBR.00021-13 24006473

4. Lin W, Bazylinski DA, Xiao T, Wu L-F, Pan Y. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol. 2014;16(9):2646–58. doi: 10.1111/1462-2920.12313 24148107

5. Lin W, Pan Y, Bazylinski DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ Microbiol Rep. 2017;9(4):345–56. doi: 10.1111/1758-2229.12550 28557300

6. Frankel RB, Bazylinski DA, Johnson MS, Taylor BL. Magneto-aerotaxis in marine coccoid bacteria. Biophys J. 1997 Aug;73(2):994–1000. doi: 10.1016/S0006-3495(97)78132-3 9251816

7. Blakemore R. Magnetotactic bacteria. Science. 1975 Oct 24;190(4212):377–9. doi: 10.1126/science.170679 170679

8. Amor M, Tharaud M, Gélabert A, Komeili A. Single-cell determination of iron content in magnetotactic bacteria: implications for the iron biogeochemical cycle. Environ Microbiol. 2019. doi: 10.1111/1462-2920.14708 31187921

9. Kopp RE, Kirschvink JL. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth-Sci Rev. 2008 Jan 1;86(1):42–61.

10. Lin W, Paterson GA, Zhu Q, Wang Y, Kopylova E, Li Y, et al. Origin of microbial biomineralization and magnetotaxis during the Archean. Proc Natl Acad Sci U S A. 2017 28;114(9):2171–6. doi: 10.1073/pnas.1614654114 28193877

11. Lin W, Kirschvink JL, Paterson GA, Bazylinski DA, Pan Y. On the origin of microbial magnetoreception. Natl Sci Rev.

12. Jimenez-Lopez C, Romanek CS, Bazylinski DA. Magnetite as a prokaryotic biomarker: A review. J Geophys Res Biogeosciences. 2010 Jun;115(G2):n/a-n/a.

13. Yan L, Da H, Zhang S, López VM, Wang W. Bacterial magnetosome and its potential application. Microbiol Res. 2017 Oct 1;203:19–28. doi: 10.1016/j.micres.2017.06.005 28754204

14. Alphandéry E. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front Bioeng Biotechnol. 2014;2:5. doi: 10.3389/fbioe.2014.00005 25152880

15. Vargas G, Cypriano J, Correa T, Leão P, Bazylinski DA, Abreu F. Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Mol Basel Switz. 2018 Sep 24;23(10).

16. Fukuda Y, Okamura Y, Takeyama H, Matsunaga T. Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett. 2006 Feb 6;580(3):801–12. doi: 10.1016/j.febslet.2006.01.003 16423350

17. Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, et al. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol. 2003 Oct;185(19):5779–90. doi: 10.1128/JB.185.19.5779-5790.2003 13129949

18. Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol. 2005 Nov;187(21):7176–84. doi: 10.1128/JB.187.21.7176-7184.2005 16237001

19. Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol. 2013 Oct;15(10):2712–35. doi: 10.1111/1462-2920.12128 23607663

20. Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J. 2018 Jun;12(6):1508. doi: 10.1038/s41396-018-0098-9 29581530

21. Rahn-Lee L, Byrne ME, Zhang M, Sage DL, Glenn DR, Milbourne T, et al. A Genetic Strategy for Probing the Functional Diversity of Magnetosome Formation. PLoS Genet. 2015 Jan 8;11(1):e1004811. doi: 10.1371/journal.pgen.1004811 25569806

22. Blakemore RP, Maratea D, Wolfe RS. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol. 1979 Nov;140(2):720–9. 500569

23. Matsunaga T, Nakamura C, Burgess JG, Sode K. Gene transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J Bacteriol. 1992 May;174(9):2748–53. doi: 10.1128/jb.174.9.2748-2753.1992 1314800

24. Matsunaga T, Sakaguchi T, Tadakoro F. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol. 1991 Aug 1;35(5):651–5.

25. Schleifer KH, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, et al. The Genus Magnetospirillum gen. nov. Description of Magnetospirillum gryphiswaldense sp. nov. and Transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol. 1991 Oct 1;14(4):379–85.

26. Nakamura C, Burgess JG, Sode K, Matsunaga T. An Iron-regulated Gene, magA, Encoding an Iron Transport Protein of Magnetospirillum sp. Strain AMB-1. J Biol Chem. 1995 Nov 24;270(47):28392–6. doi: 10.1074/jbc.270.47.28392 7499342

27. Wahyudi AT, Takeyama H, Matsunaga T. Isolation of Magnetospirillum magneticum AMB-1 mutants defective in bacterial magnetic particle synthesis by transposon mutagenesis. Appl Biochem Biotechnol. 2001;91–93:147–54. doi: 10.1385/abab:91-93:1-9:147 11963843

28. Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, et al. Complete Genome Sequence of the Chemolithoautotrophic Marine Magnetotactic Coccus Strain MC-1. Appl Env Microbiol. 2009 Jul 15;75(14):4835–52.

29. Smalley MD, Marinov GK, Bertani LE, DeSalvo G. Genome Sequence of Magnetospirillum magnetotacticum Strain MS-1. Genome Announc. 2015 Apr 2;3(2).

30. Grünberg K, Wawer C, Tebo BM, Schüler D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol. 2001 Oct;67(10):4573–82. doi: 10.1128/AEM.67.10.4573-4582.2001 11571158

31. Schübbe S, Würdemann C, Peplies J, Heyen U, Wawer C, Glöckner FO, et al. Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense. Appl Environ Microbiol. 2006 Sep;72(9):5757–65. doi: 10.1128/AEM.00201-06 16957191

32. Schultheiss D, Schüler D. Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol. 2003 Feb;179(2):89–94. doi: 10.1007/s00203-002-0498-z 12560986

33. Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res Int J Rapid Publ Rep Genes Genomes. 2005;12(3):157–66.

34. Komeili A, Vali H, Beveridge TJ, Newman DK. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3839–44. doi: 10.1073/pnas.0400391101 15004275

35. Grünberg K, Müller E-C, Otto A, Reszka R, Linder D, Kube M, et al. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol. 2004 Feb;70(2):1040–50. doi: 10.1128/AEM.70.2.1040-1050.2004 14766587

36. Murat D, Quinlan A, Vali H, Komeili A. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5593–8. doi: 10.1073/pnas.0914439107 20212111

37. Rioux J-B, Philippe N, Pereira S, Pignol D, Wu L-F, Ginet N. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLoS ONE. 2010 Feb 10;5(2):e9151. doi: 10.1371/journal.pone.0009151 20161777

38. Abreu N, Mannoubi S, Ozyamak E, Pignol D, Ginet N, Komeili A. Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1. J Bacteriol. 2014 Sep;196(17):3111–21. doi: 10.1128/JB.01674-14 24957623

39. Wang X, Wang Q, Zhang W, Wang Y, Li L, Wen T, et al. Complete Genome Sequence of Magnetospirillum gryphiswaldense MSR-1. Genome Announc. 2014 Mar 13;2(2).

40. Lohße A, Borg S, Raschdorf O, Kolinko I, Tompa É, Pósfai M, et al. Genetic Dissection of the mamAB and mms6 Operons Reveals a Gene Set Essential for Magnetosome Biogenesis in Magnetospirillum gryphiswaldense. J Bacteriol. 2014 Jul;196(14):2658–69. doi: 10.1128/JB.01716-14 24816605

41. Lohße A, Ullrich S, Katzmann E, Borg S, Wanner G, Richter M, et al. Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization. PLoS ONE [Internet]. 2011 Oct 17;6(10). Available from: [cited 2019 Feb 7].

42. Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat Nanotechnol. 2014 Mar;9(3):193–7. doi: 10.1038/nnano.2014.13 24561353

43. Cornejo E, Subramanian P, Li Z, Jensen GJ, Komeili A. Dynamic Remodeling of the Magnetosome Membrane Is Triggered by the Initiation of Biomineralization. mBio. 2016 Mar 2;7(1):e01898–15. doi: 10.1128/mBio.01898-15 26884433

44. Raschdorf O, Forstner Y, Kolinko I, Uebe R, Plitzko JM, Schüler D. Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis. PLoS Genet. 2016 Jun 10;12(6):e1006101. doi: 10.1371/journal.pgen.1006101 27286560

45. Uebe R, Junge K, Henn V, Poxleitner G, Katzmann E, Plitzko JM, et al. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol Microbiol. 2011 Nov;82(4):818–35. doi: 10.1111/j.1365-2958.2011.07863.x 22007638

46. Murat D, Falahati V, Bertinetti L, Csencsits R, Körnig A, Downing K, et al. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol Microbiol. 2012 Aug;85(4):684–99. doi: 10.1111/j.1365-2958.2012.08132.x 22716969

47. Siponen MI, Legrand P, Widdrat M, Jones SR, Zhang W-J, Chang MCY, et al. Structural insight into magnetochrome-mediated magnetite biomineralization. Nature. 2013 Oct 31;502(7473):681–4. doi: 10.1038/nature12573 24097349

48. Rawlings AE, Bramble JP, Walker R, Bain J, Galloway JM, Staniland SS. Self-assembled MmsF proteinosomes control magnetite nanoparticle formation in vitro. Proc Natl Acad Sci. 2014 Nov 11;111(45):16094–9. doi: 10.1073/pnas.1409256111 25349410

49. Kashyap S, Woehl TJ, Liu X, Mallapragada SK, Prozorov T. Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ. ACS Nano. 2014 Sep 23;8(9):9097–106. doi: 10.1021/nn502551y 25162493

50. Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials. 2007 Dec;28(35):5381–9. doi: 10.1016/j.biomaterials.2007.07.051 17720242

51. Yamagishi A, Tanaka M, Lenders JJM, Thiesbrummel J, Sommerdijk NAJM, Matsunaga T, et al. Control of magnetite nanocrystal morphology in magnetotactic bacteria by regulation of mms7 gene expression. In: Scientific reports. 2016.

52. Arakaki A, Yamagishi A, Fukuyo A, Tanaka M, Matsunaga T. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. Mol Microbiol. 2014 Aug;93(3):554–67. doi: 10.1111/mmi.12683 24961165

53. Jones SR, Wilson TD, Brown ME, Rahn-Lee L, Yu Y, Fredriksen LL, et al. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3904–9. doi: 10.1073/pnas.1417614112 25775527

54. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature. 2006 Mar;440(7080):110–4. doi: 10.1038/nature04382 16299495

55. Komeili A, Li Z, Newman DK, Jensen GJ. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science. 2006 Jan 13;311(5758):242–5. doi: 10.1126/science.1123231 16373532

56. Draper O, Byrne ME, Li Z, Keyhani S, Barrozo JC, Jensen G, et al. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol Microbiol. 2011 Oct;82(2):342–54. doi: 10.1111/j.1365-2958.2011.07815.x 21883528

57. Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 2016 12;14(1):88. doi: 10.1186/s12915-016-0290-1 27733152

58. Ozyamak E, Kollman J, Agard DA, Komeili A. The bacterial actin MamK: in vitro assembly behavior and filament architecture. J Biol Chem. 2013 Feb 8;288(6):4265–77. doi: 10.1074/jbc.M112.417030 23204522

59. Toro-Nahuelpan M, Giacomelli G, Raschdorf O, Borg S, Plitzko JM, Bramkamp M, et al. MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nat Microbiol. 2019 Jul 29;

60. Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol. 2010;77(1):208–24. doi: 10.1111/j.1365-2958.2010.07202.x 20487281

61. Taoka A, Kiyokawa A, Uesugi C, Kikuchi Y, Oestreicher Z, Morii K, et al. Tethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells. mBio. 2017 08;8(4).

62. Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016 13;14(10):621–37. doi: 10.1038/nrmicro.2016.99 27620945

63. Barber-Zucker S, Zarivach R. A Look into the Biochemistry of Magnetosome Biosynthesis in Magnetotactic Bacteria. ACS Chem Biol. 2017 20;12(1):13–22. doi: 10.1021/acschembio.6b01000 27930882

64. Schüler D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev. 2008;32(4):654–72. doi: 10.1111/j.1574-6976.2008.00116.x 18537832

65. Raschdorf O, Müller FD, Pósfai M, Plitzko JM, Schüler D. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol Microbiol. 2013 Sep;89(5):872–86. doi: 10.1111/mmi.12317 23889511

66. Müller FD, Raschdorf O, Nudelman H, Messerer M, Katzmann E, Plitzko JM, et al. The FtsZ-Like Protein FtsZm of Magnetospirillum gryphiswaldense Likely Interacts with Its Generic Homolog and Is Required for Biomineralization under Nitrate Deprivation. J Bacteriol. 2014 Feb 1;196(3):650–9. doi: 10.1128/JB.00804-13 24272781

67. Ding Y, Li J, Liu J, Yang J, Jiang W, Tian J, et al. Deletion of the ftsZ-Like Gene Results in the Production of Superparamagnetic Magnetite Magnetosomes in Magnetospirillum gryphiswaldense. J Bacteriol. 2010 Feb;192(4):1097–105. doi: 10.1128/JB.01292-09 20023033

68. Li Y, Katzmann E, Borg S, Schüler D. The Periplasmic Nitrate Reductase Nap Is Required for Anaerobic Growth and Involved in Redox Control of Magnetite Biomineralization in Magnetospirillum gryphiswaldense. J Bacteriol. 2012 Sep 15;194(18):4847–56. doi: 10.1128/JB.00903-12 22730130

69. Li Y, Raschdorf O, Silva KT, Schüler D. The Terminal Oxidase cbb3 Functions in Redox Control of Magnetite Biomineralization in Magnetospirillum gryphiswaldense. J Bacteriol. 2014 Jul;196(14):2552–62. doi: 10.1128/JB.01652-14 24794567

70. Li Y, Sabaty M, Borg S, Silva KT, Pignol D, Schüler D. The oxygen sensor MgFnr controls magnetite biomineralization by regulation of denitrification in Magnetospirillum gryphiswaldense. BMC Microbiol. 2014 Jun 10;14(1):153.

71. Fillat MF. The FUR (ferric uptake regulator) superfamily: Diversity and versatility of key transcriptional regulators. Arch Biochem Biophys. 2014 Mar 15;546:41–52. doi: 10.1016/ 24513162

72. Uebe R, Voigt B, Schweder T, Albrecht D, Katzmann E, Lang C, et al. Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J Bacteriol. 2010 Aug;192(16):4192–204. doi: 10.1128/JB.00319-10 20562310

73. Rong C, Huang Y, Zhang W, Jiang W, Li Y, Li J. Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res Microbiol. 2008 Oct;159(7–8):530–6. doi: 10.1016/j.resmic.2008.06.005 18639631

74. Suzuki T, Okamura Y, Calugay RJ, Takeyama H, Matsunaga T. Global Gene Expression Analysis of Iron-Inducible Genes in Magnetospirillum magneticum AMB-1. J Bacteriol. 2006 Mar;188(6):2275–9. doi: 10.1128/JB.188.6.2275-2279.2006 16513757

75. Taoka A, Umeyama C, Fukumori Y. Identification of iron transporters expressed in the magnetotactic bacterium Magnetospirillum magnetotacticum. Curr Microbiol. 2009 Feb;58(2):177–81. doi: 10.1007/s00284-008-9305-7 18972162

76. Wang Q, Wang M, Wang X, Guan G, Li Y, Peng Y, et al. Iron Response Regulator Protein IrrB in Magnetospirillum gryphiswaldense MSR-1 Helps Control the Iron/Oxygen Balance, Oxidative Stress Tolerance, and Magnetosome Formation. Appl Environ Microbiol. 2015 Dec;81(23):8044–53. doi: 10.1128/AEM.02585-15 26386052

77. Lin W, Deng A, Wang Z, Li Y, Wen T, Wu L-F, et al. Genomic insights into the uncultured genus “Candidatus Magnetobacterium” in the phylum Nitrospirae. ISME J. 2014 Dec;8(12):2463–77. doi: 10.1038/ismej.2014.94 24914800

78. Sakaguchi T, Burgess JG, Matsunaga T. Magnetite formation by a sulphate-reducing bacterium. Nature. 1993 Sep;365(6441):47.

79. Sakaguchi T, Arakaki A, Matsunaga T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol. 2002 Jan;52(1):215–21.

80. Grant CR, Rahn-Lee L, LeGault KN, Komeili A. Genome Editing Method for the Anaerobic Magnetotactic Bacterium Desulfovibrio magneticus RS-1. Appl Env Microbiol. 2018 Nov 15;84(22):e01724–18.

81. Byrne ME, Ball DA, Guerquin-Kern J-L, Rouiller I, Wu T-D, Downing KH, et al. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc Natl Acad Sci. 2010 Jul 6;107(27):12263–8. doi: 10.1073/pnas.1001290107 20566879

82. Kolinko S, Richter M, Glöckner F-O, Brachmann A, Schüler D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol. 2016 Jan;18(1):21–37. doi: 10.1111/1462-2920.12907 26060021

83. Descamps ECT, Monteil CL, Menguy N, Ginet N, Pignol D, Bazylinski DA, et al. Desulfamplus magnetovallimortis gen. nov., sp. nov., a magnetotactic bacterium from a brackish desert spring able to biomineralize greigite and magnetite, that represents a novel lineage in the Desulfobacteraceae. Syst Appl Microbiol. 2017 Jul;40(5):280–9. doi: 10.1016/j.syapm.2017.05.001 28622795

84. Monteil CL, Perrière G, Menguy N, Ginet N, Alonso B, Waisbord N, et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ Microbiol. 2018 Dec;20(12):4415–30. doi: 10.1111/1462-2920.14364 30043533

85. Lefèvre CT, Menguy N, Abreu F, Lins U, Pósfai M, Prozorov T, et al. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science. 2011 Dec 23;334(6063):1720–3. doi: 10.1126/science.1212596 22194580

86. DeLong EF, Frankel RB, Bazylinski DA. Multiple Evolutionary Origins of Magnetotaxis in Bacteria. Science. 1993;259(5096):803–6. doi: 10.1126/science.259.5096.803 17809345

87. Abreu F, Cantão ME, Nicolás MF, Barcellos FG, Morillo V, Almeida LG, et al. Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria. ISME J. 2011 Oct;5(10):1634–40. doi: 10.1038/ismej.2011.35 21509043

88. Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Almeida LGP de, Vasconcelos ATR de, et al. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ Microbiol. 2013;15(8):2267–74. doi: 10.1111/1462-2920.12097 23438345

89. Yang W, Li R, Peng T, Zhang Y, Jiang W, Li Y, et al. mamO and mamE genes are essential for magnetosome crystal biomineralization in Magnetospirillum gryphiswaldense MSR-1. Res Microbiol. 2010 Oct;161(8):701–5. doi: 10.1016/j.resmic.2010.07.002 20674739

90. Quinlan A, Murat D, Vali H, Komeili A. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol Microbiol. 2011 May;80(4):1075–87. doi: 10.1111/j.1365-2958.2011.07631.x 21414040

91. Hershey DM, Ren X, Melnyk RA, Browne PJ, Ozyamak E, Jones SR, et al. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria. PLoS Biol. 2016 Mar;14(3):e1002402. doi: 10.1371/journal.pbio.1002402 26981620

92. Hershey DM, Browne PJ, Iavarone AT, Teyra J, Lee EH, Sidhu SS, et al. Magnetite Biomineralization in Magnetospirillum magneticum Is Regulated by a Switch-like Behavior in the HtrA Protease MamE. J Biol Chem. 2016 19;291(34):17941–52. doi: 10.1074/jbc.M116.731000 27302060

93. Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, Hoover CA, et al. Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons. mBio. 2015 Jul 1;6(3):e00306–15. doi: 10.1128/mBio.00306-15 25968644

94. Chen H, Zhang S-D, Chen L, Cai Y, Zhang W-J, Song T, et al. Efficient Genome Editing of Magnetospirillum magneticum AMB-1 by CRISPR-Cas9 System for Analyzing Magnetotactic Behavior. Front Microbiol. 2018 Jul 17;9.

95. Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, et al. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell. 2016 Jun 2;165(6):1493–506.

96. Peters JM, Koo B-M, Patino R, Heussler GE, Hearne CC, Qu J, et al. Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nat Microbiol. 2019 Feb;4(2):244–50. doi: 10.1038/s41564-018-0327-z 30617347

97. Tay A, Pfeiffer D, Rowe K, Tannenbaum A, Popp F, Strangeway R, et al. High-Throughput Microfluidic Sorting of Live Magnetotactic Bacteria. Appl Env Microbiol. 2018 Sep 1;84(17):e01308–18.

98. Tay A, McCausland H, Komeili A, Carlo DD. Nano and Microtechnologies for the Study of Magnetotactic Bacteria. Adv Funct Mater. 2019;29(38):1904178.

99. Wen T, Guo F, Zhang Y, Tian J, Li Y, Li J, et al. A novel role for Crp in controlling magnetosome biosynthesis in Magnetospirillum gryphiswaldense MSR-1. Sci Rep. 2016 Feb 16;6:21156. doi: 10.1038/srep21156 26879571

100. Lefèvre CT, Bennet M, Landau L, Vach P, Pignol D, Bazylinski DA, et al. Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys J. 2014 Jul 15;107(2):527–38. doi: 10.1016/j.bpj.2014.05.043 25028894

101. Popp F, Armitage JP, Schüler D. Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat Commun. 2014 Nov 14;5:5398. doi: 10.1038/ncomms6398 25394370

102. Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol. 2004 Oct;70(10):6230–9. doi: 10.1128/AEM.70.10.6230-6239.2004 15466570

103. Flies CB, Jonkers HM, de Beer D, Bosselmann K, Böttcher ME, Schüler D. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol Ecol. 2005 Apr 1;52(2):185–95. doi: 10.1016/j.femsec.2004.11.006 16329905

104. Liu J, Zhang W, Du H, Leng X, Li J-H, Pan H, et al. Seasonal changes in the vertical distribution of two types of multicellular magnetotactic prokaryotes in the sediment of Lake Yuehu, China. Environ Microbiol Rep. 2018;10(4):475–84. doi: 10.1111/1758-2229.12652 29687636

105. Moisescu C, Ardelean II, Benning LG. The effect and role of environmental conditions on magnetosome synthesis. Front Microbiol. 2014 Feb 11;5.

106. Bazylinski DA, Lefèvre CT. Magnetotactic bacteria from extreme environments. Life Basel Switz. 2013 Mar 26;3(2):295–307.

Článek vyšel v časopise

PLOS Genetics

2020 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se