Gα/GSA-1 works upstream of PKA/KIN-1 to regulate calcium signaling and contractility in the Caenorhabditis elegans spermatheca


Autoři: Perla G. Castaneda aff001;  Alyssa D. Cecchetelli aff001;  Hannah N. Pettit aff001;  Erin J. Cram aff001
Působiště autorů: Department of Biology, Northeastern University, Boston, MA, United States aff001
Vyšlo v časopise: Gα/GSA-1 works upstream of PKA/KIN-1 to regulate calcium signaling and contractility in the Caenorhabditis elegans spermatheca. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008644
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008644

Souhrn

Correct regulation of cell contractility is critical for the function of many biological systems. The reproductive system of the hermaphroditic nematode C. elegans contains a contractile tube of myoepithelial cells known as the spermatheca, which stores sperm and is the site of oocyte fertilization. Regulated contraction of the spermatheca pushes the embryo into the uterus. Cell contractility in the spermatheca is dependent on actin and myosin and is regulated, in part, by Ca2+ signaling through the phospholipase PLC-1, which mediates Ca2+ release from the endoplasmic reticulum. Here, we describe a novel role for GSA-1/Gαs, and protein kinase A, composed of the catalytic subunit KIN-1/PKA-C and the regulatory subunit KIN-2/PKA-R, in the regulation of Ca2+ release and contractility in the C. elegans spermatheca. Without GSA-1/Gαs or KIN-1/PKA-C, Ca2+ is not released, and oocytes become trapped in the spermatheca. Conversely, when PKA is activated through either a gain of function allele in GSA-1 (GSA-1(GF)) or by depletion of KIN-2/PKA-R, the transit times and total numbers, although not frequencies, of Ca2+ pulses are increased, and Ca2+ propagates across the spermatheca even in the absence of oocyte entry. In the spermathecal-uterine valve, loss of GSA-1/Gαs or KIN-1/PKA-C results in sustained, high levels of Ca2+ and a loss of coordination between the spermathecal bag and sp-ut valve. Additionally, we show that depleting phosphodiesterase PDE-6 levels alters contractility and Ca2+ dynamics in the spermatheca, and that the GPB-1 and GPB-2 Gβ subunits play a central role in regulating spermathecal contractility and Ca2+ signaling. This work identifies a signaling network in which Ca2+ and cAMP pathways work together to coordinate spermathecal contractions for successful ovulations.

Klíčová slova:

Caenorhabditis elegans – Embryos – Gonads – Muscle contraction – Oocytes – Ovulation – RNA interference – Uterus


Zdroje

1. Fabry B, Fredberg JJ. Mechanotransduction, asthma and airway smooth muscle. Drug Discovery Today: Disease Models. 2007. pp. 131–137. doi: 10.1016/j.ddmod.2007.12.003 18836522

2. Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Developmental Cell. 2006. pp. 11–20. doi: 10.1016/j.devcel.2005.12.006 16399074

3. Kariya K-I, Bui YK, Gao X, Sternberg PW, Kataoka T. Phospholipase C epsilon regulates ovulation in Caenorhabditis elegans. Dev Biol. 2004;274: 201–10. doi: 10.1016/j.ydbio.2004.06.024 15355798

4. Kovacevic I, Cram EJ. FLN-1/Filamin is required for maintenance of actin and exit of fertilized oocytes from the spermatheca in C. elegans. Dev Biol. 2010;347: 247–257. doi: 10.1016/j.ydbio.2010.08.005 20707996

5. Kovacevic I, Orozco JM, Cram EJ. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca. PLoS Genet. 2013;9: e1003510. doi: 10.1371/journal.pgen.1003510 23671426

6. Ouellette MH, Martin E, Lacoste-Caron G, Hamiche K, Jenna S. Spatial control of active CDC-42 during collective migration of hypodermal cells in Caenorhabditis elegans. J Mol Cell Biol. 2016;8: 313–327. doi: 10.1093/jmcb/mjv062 26578656

7. Tan PY, Zaidel-Bar R. Transient membrane localization of SPV-1 drives cyclical actomyosin contractions in the C elegans spermatheca. Curr Biol. 2015;25: 141–151. doi: 10.1016/j.cub.2014.11.033 25532891

8. Wirshing ACE, Cram EJ. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol Biol Cell. 2018;29: 2433–2449. doi: 10.1091/mbc.E18-06-0347 30091661

9. Hirsh D, Oppenheim D, Klass M. Development of the reproductive system of Caenorhabditis elegans. Dev Biol. 1976;49: 200–19. doi: 10.1016/0012-1606(76)90267-0 943344

10. Hubbard EJA, Greenstein D. TheCaenorhabditis elegans gonad: A test tube for cell and developmental biology. Dev Dyn. 2000;218: 2–22. doi: 10.1002/(SICI)1097-0177(200005)218:1<2::AID-DVDY2>3.0.CO;2-W 10822256

11. McCarter J, Bartlett B, Dang T, Schedl T. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol. 1997;181: 121–43. doi: 10.1006/dbio.1996.8429 9013925

12. Yamamoto I, Kosinski ME, Greenstein D. Start me up: Cell signaling and the journey from oocyte to embryo in C. elegans. Dev Dyn. 2006;235: 571–585. doi: 10.1002/dvdy.20662 16372336

13. Pelaia G, Renda T, Gallelli L, Vatrella A, Busceti MT, Agati S, et al. Molecular mechanisms underlying airway smooth muscle contraction and proliferation: Implications for asthma. Respir Med. 2008;102: 1173–1181. doi: 10.1016/j.rmed.2008.02.020 18579364

14. Sethi K, Cram EJ, Zaidel-Bar R. Stretch-induced actomyosin contraction in epithelial tubes: Mechanotransduction pathways for tubular homeostasis. Seminars in Cell and Developmental Biology. Elsevier Ltd; 2017. pp. 146–152. doi: 10.1016/j.semcdb.2017.05.014 28610943

15. Brozovich F V., Nicholson CJ, Degen C V., Gao YZ, Aggarwal M, Morgan KG. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacological Reviews. American Society for Pharmacology and Experimental Therapy; 2016. pp. 476–532. doi: 10.1124/pr.115.010652 27037223

16. Kelley CA, Wirshing ACE, Zaidel-Bar R, Cram EJ. The myosin light-chain kinase MLCK-1 relocalizes during Caenorhabditis elegans ovulation to promote actomyosin bundle assembly and drive contraction. Mol Biol Cell. 2018;29: 1975–1991. doi: 10.1091/mbc.E18-01-0056 30088798

17. Wirshing ACE, Cram EJ. Myosin activity drives actomyosin bundle formation and organization in contractile cells of the Caenorhabditis elegans spermatheca. Mol Biol Cell. 2017;28: 1937–1949. doi: 10.1091/mbc.E17-01-0029 28331075

18. Hegsted A., Wright FA, Votra SB, Pruyne D. INF2- and FHOD-related formins promote ovulation in the somatic gonad of C. elegans. Cytoskeleton. 2016;73: 712–728. doi: 10.1002/cm.21341 27770600

19. Deng H, Xia D, Fang B, Zhang H. The flightless I homolog, fli-1, regulates anterior/posterior polarity, asymmetric cell division and ovulation during Caenorhabditis elegans development. Genetics. 2007;177: 847–860. doi: 10.1534/genetics.107.078964 17720906

20. Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, Signaling, and Physiological Functions of G-Proteins. J Mol Biol. 2016;428: 3850–3868. doi: 10.1016/j.jmb.2016.08.002 27515397

21. Penn RB, Benovic JL. Regulation of heterotrimeric G protein signaling in airway smooth muscle. Proc Am Thorac Soc. 2008;5: 47–57. doi: 10.1513/pats.200705-054VS 18094084

22. Govindan JA, Cheng H, Harris JE, Greenstein D. Gαo/i and Gαs Signaling Function in Parallel with the MSP/Eph Receptor to Control Meiotic Diapause in C. elegans. Curr Biol. 2006;16: 1257–1268. doi: 10.1016/j.cub.2006.05.020 16824915

23. Govindan JA, Nadarajan S, Kim S, Starich T a, Greenstein D. Somatic cAMP signaling regulates MSP-dependent oocyte growth and meiotic maturation in C. elegans. Development. 2009;136: 2211–2221. doi: 10.1242/dev.034595 19502483

24. Korswagen HC, Park JH, Ohshima Y, Plasterk RHA. An activating mutation in a Caenorhabditis elegans G(s) protein induces neural degeneration. Genes Dev. 1997;11: 1493–1503. doi: 10.1101/gad.11.12.1493 9203577

25. Park JH, Ohshima S, Tani T, Ohshima Y. Structure and expression of the gsa-1 gene encoding a G protein alpha(s) subunit in C. elegans. Gene. 1997;194: 183–90. doi: 10.1016/s0378-1119(97)00122-4 9272860

26. Segalat L, Elkes DA, Kaplan JM. Modulation of serotonin-controlled behaviors by G o in Caenorhabditis elegans. Science (80-). 1995;267: 1648–1651.

27. Mendel JE, Korswagen HC, Liu KS, Hajdu-Cronin YM, Simon MI, Plasterk RH, et al. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science. 1995;267: 1652–5. doi: 10.1126/science.7886455 7886455

28. Srinivasan DG, Fisk RM, Xu H, Van den Heuvel S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev. 2003;17: 1225–1239. doi: 10.1101/gad.1081203 12730122

29. Koelle MR. Heterotrimeric G Protein Signaling: Getting inside the Cell. Cell. 2006;126: 25–27. doi: 10.1016/j.cell.2006.06.026 16839871

30. van der Voorn L, Gebbink M, Plasterk RHA, Ploegh HL. Characterization of a G-protein β-subunit gene from the nematode Caenorhabditis elegans. J Mol Biol. 1990;213: 17–26. doi: 10.1016/s0022-2836(05)80118-4 2110981

31. Zwaal RR, Ahringer J, van Luenen HGA., Rushforth A, Anderson P, Plasterk RH. G Proteins Are Required for Spatial Orientation of Early Cell Cleavages in C. elegans Embryos. Cell. 1996;86: 619–629. doi: 10.1016/s0092-8674(00)80135-x 8752216

32. Jansen G, Weinkove D, Plasterk RHA. The G-protein γ subunit gpc-1 of the nematode C.elegans is involved in taste adaptation. EMBO J. 2002;21: 986–994. doi: 10.1093/emboj/21.5.986 11867526

33. Krapivinsky G, Krapivinsky L, Wickman K, Clapham DE. Gβγ binds directly to the G protein-gated K+ channel, I(KACh). J Biol Chem. 1995;270: 29059–29062. doi: 10.1074/jbc.270.49.29059 7493925

34. Dascal N. Ion-channel regulation by G proteins. Trends in Endocrinology and Metabolism. Elsevier Inc.; 2001. pp. 391–398. doi: 10.1016/s1043-2760(01)00475-1 11595540

35. Herlitze S, Garcla DE, Mackle K, Hille B, Scheuer T, Catterall WA. Modulation of Ca 2+ channels by G-protein βγ subunits. Nature. 1996;380: 258–262. doi: 10.1038/380258a0 8637576

36. Tang WJ, Gilman AG. Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science (80-). 1991;254: 1500–1503. doi: 10.1126/science.1962211 1962211

37. van der Linden AM, Simmer F, Cuppen E, Plasterk RH. The G-protein beta-subunit GPB-2 in Caenorhabditis elegans regulates the G(o)alpha-G(q)alpha signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics. 2001;158: 221–35. Available: http://www.ncbi.nlm.nih.gov/pubmed/11333232 11333232

38. Koelle MR, Horvitz HR. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell. 1996;84: 115–25. doi: 10.1016/s0092-8674(00)80998-8 8548815

39. Shyn SI, Kerr R, Schafer WR. Serotonin and Go Modulate Functional States of Neurons and Muscles Controlling C. elegans Egg-Laying Behavior. Curr Biol. 2003;13: 1910–1915. doi: 10.1016/j.cub.2003.10.025 14588249

40. Lee JH, Han JS, Kong J, Ji Y, Lv X, Lee J, et al. Protein kinase a subunit balance regulates lipid metabolism in Caenorhabditis elegans and mammalian adipocytes. J Biol Chem. 2016;291: 20315–20328. doi: 10.1074/jbc.M116.740464 27496951

41. Howe AK. Regulation of actin-based cell migration by cAMP/PKA. Jul 5, 2004 pp. 159–174. doi: 10.1016/j.bbamcr.2004.03.005 15246685

42. Billington CK, Ojo OO, Penn RB, Ito S. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther. 2013;26: 112–120. doi: 10.1016/j.pupt.2012.05.007 22634112

43. Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cellular Signalling. Elsevier Inc.; 2017. pp. 1–11. doi: 10.1016/j.cellsig.2017.05.012 28528970

44. Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 1996;15: 510–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/8599934 8599934

45. Liu F, Xiao Y, Ji XL, Zhang KQ, Zou CG. The cAMP-PKA pathway-mediated fat mobilization is required for cold tolerance in C. elegans. Sci Rep. 2017;7. doi: 10.1038/s41598-017-00630-w 28377576

46. Kim S, Govindan JA, Tu ZJ, Greenstein D. SACY-1 DEAD-box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Genetics. 2012;192: 905–928. doi: 10.1534/genetics.112.143271 22887816

47. Gottschling DC, Döring F, Lüersen K. Locomotion behavior is affected by the GαS pathway and the two-pore-domain K+ channel TWK-7 interacting in GABAergic motor neurons in Caenorhabditis elegans. Genetics. 2017;206: 283–297. doi: 10.1534/genetics.116.195669 28341653

48. Xiao Y, Liu F, Zhao PJ, Zou CG, Zhang KQ. PKA/KIN-1 mediates innate immune responses to bacterial pathogens in Caenorhabditis elegans. Innate Immun. 2017;23: 656–666. doi: 10.1177/1753425917732822 28958206

49. Wang H, Sieburth D. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior. PLoS Genet. 2013;9. doi: 10.1371/journal.pgen.1003831 24086161

50. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods. 2009;6: 875–81. doi: 10.1038/nmeth.1398 19898485

51. Iwasaki K, James M, Francis R, Schedl T. emo-1, a Caenorhabditis elegans Sec61y Homologue, Is Required for Oocyte Development and Ovulation. J Cell Biol. 1996;134: 699–714. doi: 10.1083/jcb.134.3.699 8707849

52. Bouffard J, Cecchetelli AD, Clifford C, Sethi K, Zaidel-Bar R, Cram EJ. The RhoGAP SPV-1 regulates calcium signaling to control the contractility of the Caenorhabditis elegans spermatheca during embryo transits. Mol Biol Cell. 2019;30: 907–922. doi: 10.1091/mbc.E18-10-0633 30726159

53. Deboeck PR, Montpetit MA, Bergeman CS, Boker SM. Using Derivative Estimates to Describe Intraindividual Variability at Multiple Time Scales. Psychol Methods. 2009;14: 367–386. doi: 10.1037/a0016622 19968398

54. Schade MA, Reynolds NK, Dollins CM, Miller KG. Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (synembryn) mutants activate the Gαs pathway and define a third major branch of the synaptic signaling network. Genetics. 2005;169: 631–649. doi: 10.1534/genetics.104.032334 15489510

55. Savai R, Pullamsetti SS, Banat GA, Weissmann N, Ghofrani HA, Grimminger F, et al. Targeting cancer with phosphodiesterase inhibitors. Expert Opinion on Investigational Drugs. 2010. pp. 117–131. doi: 10.1517/13543780903485642 20001559

56. Smrcka A V. G protein βγ subunits: Central mediators of G protein-coupled receptor signaling. Cellular and Molecular Life Sciences. 2008. pp. 2191–2214. doi: 10.1007/s00018-008-8006-5 18488142

57. van Goor MK, Verkaart S, van Dam TJ, Huynen MA, van der Wijst J. Interspecies differences in PTH-mediated PKA phosphorylation of the epithelial calcium channel TRPV5. Pflugers Arch Eur J Physiol. 2017;469: 1301–1311. doi: 10.1007/s00424-017-1996-9 28534087

58. Oestreich EA, Wang H, Malik S, Kaproth-Joslin KA, Blaxall BC, Kelley GG, et al. Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II. J Biol Chem. 2008/10/30. 2007;282: 1514–1522. M608495200 [pii]\n doi: 10.1074/jbc.M608495200 17178726

59. Oestreich EA, Wang H, Malik S, Kaproth-Joslin KA, Blaxall BC, Kelley GG, et al. Epac-mediated activation of phospholipase Cε plays a critical role in β-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem. 2007;282: 5488–5495. doi: 10.1074/jbc.M608495200 17178726

60. Bastiani C, Mendel J. Heterotrimeric G proteins in C. elegans. WormBook: the online review of C. elegans biology. 2006. pp. 1–25. doi: 10.1895/wormbook.1.75.1 18050432

61. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Reviews Molecular Cell Biology. 2008. pp. 60–71. doi: 10.1038/nrm2299 18043707

62. DiGiacomo V, Marivin A, Garcia-Marcos M. When Heterotrimeric G Proteins Are Not Activated by G Protein-Coupled Receptors: Structural Insights and Evolutionary Conservation. Biochemistry. American Chemical Society; 2018. pp. 255–257. doi: 10.1021/acs.biochem.7b00845 29035513

63. Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science. American Association for the Advancement of Science; 1998. pp. 2028–2033. doi: 10.1126/science.282.5396.2028 9851919

64. Fernandez RW, Wei K, Wang EY, Mikalauskaite D, Olson A, Pepper J, et al. Cellular expression and functional roles of all 26 neurotransmitter GPCRs in the C. elegans egg-laying circuit. bioRxiv. 2020; 2020.04.23.037242. doi: 10.1101/2020.04.23.037242

65. Madukwe JC, Garland-Kuntz EE, Lyon AM, Smrcka A V. G protein subunits directly interact with and activate phospholipase C. J Biol Chem. 2018;293: 6387–6397. doi: 10.1074/jbc.RA118.002354 29535186

66. Dong JM, Leung T, Manser E, Lim L. cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKα. J Biol Chem. 1998;273: 22554–22562. doi: 10.1074/jbc.273.35.22554 9712882

67. Maruyama R, Velarde N V., Klancer R, Gordon S, Kadandale P, Parry JM, et al. EGG-3 Regulates Cell-Surface and Cortex Rearrangements during Egg Activation in Caenorhabditis elegans. Curr Biol. 2007;17: 1555–1560. doi: 10.1016/j.cub.2007.08.011 17869112

68. Supattapone S, Danoff SK, Theibert A, Joseph SK, Steiner J, Snyder SH. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci U S A. 1988;85: 8747–8750. doi: 10.1073/pnas.85.22.8747 2847175

69. Tada M, Toyofuku T. SR Ca(2+)-ATPase/phospholamban in cardiomyocyte function. J Card Fail. 1996;2: S77–85. doi: 10.1016/s1071-9164(96)80062-5 8951564

70. Nakagawa T, Yokoe S, Asahi M. Phospholamban degradation is induced by phosphorylation-mediated ubiquitination and inhibited by interaction with cardiac type Sarco(endo)plasmic reticulum Ca2+-ATPase. Biochem Biophys Res Commun. 2016;472: 523–530. doi: 10.1016/j.bbrc.2016.03.009 26966065

71. Nalli AD, Kumar DP, Al-Shboul O, Mahavadi S, Kuemmerle JF, Grider JR, et al. Regulation of Gβγi-Dependent PLC-β3 Activity in Smooth Muscle: Inhibitory Phosphorylation of PLC-β3 by PKA and PKG and Stimulatory Phosphorylation of Gαi-GTPase-Activating Protein RGS2 by PKG. Cell Biochem Biophys. 2014;70: 867–880. doi: 10.1007/s12013-014-9992-6 24777815

72. Miller KG, Emerson MD, Rand JB. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 1999;24: 323–33. doi: 10.1016/s0896-6273(00)80847-8 10571227

73. Gold MG, Gonen T, Scott JD. Local cAMP signaling in disease at a glance. J Cell Sci. 2013;126: 4537–4543. doi: 10.1242/jcs.133751 24124191

74. Hope I. C. elegans, A Practical Approach. Oxford: Oxford University Press; 1999.

75. Timmons L, Fire A. Specific interference by ingested dsRNA. Nature. 1998;395: 854. doi: 10.1038/27579 9804418

76. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Nature Methods. 2012. pp. 676–682. doi: 10.1038/nmeth.2019 22743772


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 8

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se