Learning the properties of adaptive regions with functional data analysis
Autoři:
Mehreen R. Mughal aff001; Hillary Koch aff002; Jinguo Huang aff001; Francesca Chiaromonte aff002; Michael DeGiorgio aff003
Působiště autorů:
Bioinformatics and Genomics at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
aff001; Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
aff002; Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, United States of America
aff003
Vyšlo v časopise:
Learning the properties of adaptive regions with functional data analysis. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008896
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008896
Souhrn
Identifying regions of positive selection in genomic data remains a challenge in population genetics. Most current approaches rely on comparing values of summary statistics calculated in windows. We present an approach termed SURFDAWave, which translates measures of genetic diversity calculated in genomic windows to functional data. By transforming our discrete data points to be outputs of continuous functions defined over genomic space, we are able to learn the features of these functions that signify selection. This enables us to confidently identify complex modes of natural selection, including adaptive introgression. We are also able to predict important selection parameters that are responsible for shaping the inferred selection events. By applying our model to human population-genomic data, we recapitulate previously identified regions of selective sweeps, such as OCA2 in Europeans, and predict that its beneficial mutation reached a frequency of 0.02 before it swept 1,802 generations ago, a time when humans were relatively new to Europe. In addition, we identify BNC2 in Europeans as a target of adaptive introgression, and predict that it harbors a beneficial mutation that arose in an archaic human population that split from modern humans within the hypothesized modern human-Neanderthal divergence range.
Klíčová slova:
Forecasting – Genomics – Genomics statistics – Haplotypes – Human genomics – Introgression – Simulation and modeling – Statistical distributions
Zdroje
1. Riley MA. Positive selection for colicin diversity in bacteria. Molecular Biology and Evolution. 1993;10:1048–1059. 8412648
2. Suo C, Xu H, Khor CC, Ong RT, Sim X, Chen J, et al. Natural positive selection and north-south genetic diversity in East Asia. European Journal of Human Genetics. 2012;20:102–110. doi: 10.1038/ejhg.2011.139 21792231
3. Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. Genetical Research. 1974;23:23–35. doi: 10.1017/S0016672300014634
4. Setter D, Mousset S, Cheng X, Nielsen R, DeGiorgio M, Hermisson J. VolcanoFinder: genomic scans for adaptive introgression. bioRxiv. 2019.
5. Schrider DR, Kern AD. S/HIC: robust identification of soft and hard sweeps using machine learning. PLoS Genetics. 2016;12:1–31. doi: 10.1371/journal.pgen.1005928
6. Kern AD, Schrider DR. diploS/HIC: An Updated Approach to Classifying Selective Sweeps. G3: Genes, Genomes, Genetics. 2018. doi: 10.1534/g3.118.200262
7. Flagel L, Brandvain Y, Schrider DR. The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference. Molecular Biology and Evolution. 2019;36. doi: 10.1093/molbev/msy224 30517664
8. Chan J, Perrone V, Spence JP, Jenkins PA, Mathieson S, Song YS. A Likelihood-free Inference Framework for Population Genetic Data Using Exchangeable Neural Networks. In: Proceedings of the 32Nd International Conference on Neural Information Processing Systems; 2018. p. 8603–8614.
9. Mughal MR, DeGiorgio M. Localizing and classifying selective sweeps with trend filtered regression. Molecular Biology and Evolution. 2019;36:2. doi: 10.1093/molbev/msy205
10. Cremona MA, Reimherr M, Chiaromonte F, Xu H, Makova KD, Madrigal P. Functional data analysis for computational biology. Bioinformatics. 2019. doi: 10.1093/bioinformatics/btz045 30668667
11. Ramsay JO, Silverman BW. Functional Data Analysis. 2nd ed. New York, NY: Springer; 2005.
12. Wang JL, Chiou JM, Müller HG. Functional Data Analysis. Annual Review of Statistics and Its Application. 2016;3:257–295. doi: 10.1146/annurev-statistics-041715-033624
13. Malaspinas AS, Malaspinas O, Evans SN, Slatkin M. Estimating Allele Age and Selection Coefficient from Time-Serial Data. Genetics. 2012;192(2):599–607. doi: 10.1534/genetics.112.140939 22851647
14. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. doi: 10.1038/nature16152 26595274
15. Tyler J, Pe’er I. Inference of Population Structure from Time-Series Genotype Data. The American Journal of Human Genetics. 2019;105:317–333. doi: 10.1016/j.ajhg.2019.06.002
16. Prentice HC, Lonn M, Rosquint G, Ihse M, Kindstron M. Gene diversity in a fragmented population of Briza media: grassland continuity in a landscape context. Journal of Ecology. 2006;94:87–97. doi: 10.1111/j.1365-2745.2005.01054.x
17. Yang J, Qian ZQ, Liu ZL, Li S, Sun GL, Zhao GF. Genetic diversity and geographical differentiation of Dipteronia Oliv. (Aceraceae) endemic to China as revealed by AFLP analysis. Biochemical Systematics and Ecology. 2007;35:593–599. doi: 10.1016/j.bse.2007.03.022
18. Morente-Lopez J, Garcia C, Lara-Romero C, Garcia-Fernandez A, Draper D, Iriondo JM. Geography and Environment Shape Landscape Genetics of Mediterranean Alpine Species Silene ciliata Poiret. Frontiers in plant science. 2018;9:1698–1698. doi: 10.3389/fpls.2018.01698 30538712
19. Lin K, Li H, Schlötterer C, Futschik A. Distinguishing Positive Selection From Neutral Evolution: Boosting the Performance of Summary Statistics. Genetics. 2011;187:229–244. doi: 10.1534/genetics.110.122614 21041556
20. Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased whole-genomes. Nature Genetics. 2017;49:303–309. doi: 10.1038/ng.3748 28024154
21. Haller BC, Messer PW. SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model. Molecular Biology and Evolution. 2019;36:632–637. doi: 10.1093/molbev/msy228 30517680
22. Scally A, Durbin R. Revising the human mutation rate: implications for understanding human evolution. Nature Reviews Genetics. 2012;13:745. doi: 10.1038/nrg3295 22965354
23. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2005;67:301–320. doi: 10.1111/j.1467-9868.2005.00503.x
24. Hill WG, Robertson AR. Linkage disequilibrium in finite populations. Theoretical and Applied Genetics. 1968;38:226–231. doi: 10.1007/BF01245622 24442307
25. Mallick S, Gnerre S, Reich D. The difficulty of avoiding false positives in genome scans for natural selection. Genome Research. 2009;19:922–933. doi: 10.1101/gr.086512.108 19411606
26. Charlesworth B. Stabilizing Selection, Purifying Selection, and Mutational Bias in Finite Populations. Genetics. 2013;194:955–971. doi: 10.1534/genetics.113.151555 23709636
27. Schrider DR, Kern AD. Soft Sweeps Are the Dominant Mode of Adaptation in the Human Genome. Molecular Biology and Evolution. 2017;34:1863–1877. doi: 10.1093/molbev/msx154 28482049
28. de Manuel M, Kuhlwilm M, Frandsen P, Sousa VC, Desai T, Prado-Martinez J, et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science (New York, NY). 2016;354:477–481. doi: 10.1126/science.aag2602
29. Duchen P, Živković D, Hutter S, Stephan W, Laurent S. Demographic Inference Reveals African and European Admixture in the North American Drosophila melanogaster Population. Genetics. 2013;193:291–301. doi: 10.1534/genetics.112.145912 23150605
30. Harris RB, Sackman A, Jensen JD. On the unfounded enthusiasm for soft selective sweeps II: Examining recent evidence from humans, flies, and viruses. PLOS Genetics. 2018;14:1–21. doi: 10.1371/journal.pgen.1007859
31. Harris AM, DeGiorgio M. A likelihood approach for uncovering selective sweep signatures from haplotype data. Molecular Biology and Evolution. 2020. doi: 10.1093/molbev/msaa115
32. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393 26432245
33. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A Map of Recent Positive Selection in the Human Genome. PLOS Biology. 2006;4:e72. doi: 10.1371/journal.pbio.0040072 16494531
34. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, et al. Genetic Signatures of Strong Recent Positive Selection at the Lactase Gene. The American Journal of Human Genetics. 2004;74:1111–1120. doi: 10.1086/421051 15114531
35. Wilde S, Timpson A, Kirsanow K, Kaiser E, Kayser M, Unterländer M, et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:4832–4837. doi: 10.1073/pnas.1316513111 24616518
36. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genetics. 2007;39:1443 EP–. doi: 10.1038/ng.2007.13 17952075
37. Harris AM, Garud NR, DeGiorgio M. Detection and Classification of Hard and Soft Sweeps from Unphased Genotypes by Multilocus Genotype Identity. Genetics. 2018;210:1429–1452. doi: 10.1534/genetics.118.301502 30315068
38. Fagny M, Patin E, Enard D, Barreiro LB, Quintana-Murci L, Laval G. Exploring the Occurrence of Classic Selective Sweeps in Humans Using Whole-Genome Sequencing Data Sets. Molecular Biology and Evolution. 2014;31:1850–1868. doi: 10.1093/molbev/msu118 24694833
39. Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Research. 2009;19:826–837. doi: 10.1101/gr.087577.108 19307593
40. Brilliant HM. The Mouse p (pink-eyed dilution) and Human P Genes, Oculocutaneous Albinism Type 2 (OCA2), and Melanosomal pH. Pigment Cell Research. 2001;14:86–93. doi: 10.1034/j.1600-0749.2001.140203.x 11310796
41. Zhu G, Evans DM, Duffy DL, Montgomery GW, Medland SE, Gillespie NA, et al. A Genome Scan for Eye Color in 502 Twin Families: Most Variation is due to a QTL on Chromosome 15q. Twin Research. 2004;7:197–210. doi: 10.1375/136905204323016186 15169604
42. Eiberg H, Troelsen J, Nielsen M, Mikkelsen A, Mengel-From J, Kjaer KW, et al. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Human Genetics. 2008;123:177–187. doi: 10.1007/s00439-007-0460-x 18172690
43. Hublin JJ. The earliest modern human colonization of Europe. Proceedings of the National Academy of Sciences. 2012;109:13471–13472. doi: 10.1073/pnas.1211082109
44. Cook AL, Chen W, Thurber AE, Smit DJ, Smith AG, Bladen TG, et al. Analysis of Cultured Human Melanocytes Based on Polymorphisms within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P Loci. Journal of Investigative Dermatology. 2009;129:392–405. doi: 10.1038/jid.2008.211 18650849
45. Li CY, Zhan YQ, Xu CW, Xu WX, Wang SY, Lv J, et al. EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoptosis through the activation of nuclear factor-kB. Cell Death & Differentiation. 2004;11:1299–1308. doi: 10.1038/sj.cdd.4401490
46. Baker K, Gordon SL, Melland H, Bumbak F, Scott DJ, Jiang TJ, et al. SYT1-associated neurodevelopmental disorder: a case series. Brain. 2018;141:2576–2591. doi: 10.1093/brain/awy209 30107533
47. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347. 25613900
48. Vilariño-Güell C, Wider C, Ross O, Dachsel J, Kachergus J, Lincoln S, et al. VPS35 Mutations in Parkinson Disease. The American Journal of Human Genetics. 2011;89:162–167. doi: 10.1016/j.ajhg.2011.06.001 21763482
49. Bronson PG, Mack SJ, Erlich HA, Slatkin M. A sequence-based approach demonstrates that balancing selection in classical human leukocyte antigen (HLA) loci is asymmetric. Human Molecular Genetics. 2012;22:252–261. doi: 10.1093/hmg/dds424 23065702
50. Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature. 2014;507:354–357. doi: 10.1038/nature12961 24476815
51. Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. Evidence for archaic adaptive introgression in humans. Nature Reviews Genetics. 2015;16:359 EP–. doi: 10.1038/nrg3936 25963373
52. Visser M, Palstra RJ, Kayser M. Human skin color is influenced by an intergenic DNA polymorphism regulating transcription of the nearby BNC2 pigmentation gene. Human Molecular Genetics. 2014;23:5750–5762. doi: 10.1093/hmg/ddu289 24916375
53. Monajemi H, Fontijn RD, Pannekoek H, Horrevoets AJG. The Apolipoprotein L Gene Cluster Has Emerged Recently in Evolution and Is Expressed in Human Vascular Tissue. Genomics. 2002;79:539–546. doi: 10.1006/geno.2002.6729 11944986
54. DeGiorgio M, Lohmueller KE, Nielsen R. A Model-Based Approach for Identifying Signatures of Ancient Balancing Selection in Genetic Data. PLoS Genetics. 2014;10:1–20. doi: 10.1371/journal.pgen.1004561
55. Siewert KM, Voight BF. Detecting Long-Term Balancing Selection Using Allele Frequency Correlation. Molecular Biology and Evolution. 2017;34:2996–3005. doi: 10.1093/molbev/msx209 28981714
56. Bitarello BD, de Filippo C, Teixeira JC, Schmidt JM, Kleinert P, Meyer D, et al. Signatures of Long-Term Balancing Selection in Human Genomes. Genome Biology and Evolution. 2018;10:939–955. doi: 10.1093/gbe/evy054 29608730
57. Cheng X, DeGiorgio M. Detection of Shared Balancing Selection in the Absence of Trans-Species Polymorphism. Molecular Biology and Evolution. 2018;36:177–199. doi: 10.1093/molbev/msy202
58. Siewert KM, Voight BF. BetaScan2: Standardized statistics to detect balancing selection utilizing substitution data. bioRxiv. 2018.
59. Cheng X, DeGiorgio M. Robust and window-insensitive mixture model approaches for localizing balancing selection. bioRxiv. 2019.
60. Assaf ZJ, Petrov DA, Blundell JR. Obstruction of adaptation in diploids by recessive, strongly deleterious alleles. Proceedings of the National Academy of Sciences. 2015;112:E2658–E2666. doi: 10.1073/pnas.1424949112
61. Adrion JR, Galloway JG, Kern AD. Predicting the Landscape of Recombination Using Deep Learning. Molecular Biology and Evolution. 2020. doi: 10.1093/molbev/msaa038 32077950
62. Bollback JP, York TL, Nielsen R. Estimation of 2Nes From Temporal Allele Frequency Data. Genetics. 2008;179:497–502. doi: 10.1534/genetics.107.085019 18493066
63. Ludwig A, Pruvost M, Reissmann M, Benecke N, Brockmann GA, Castaños P, et al. Coat Color Variation at the Beginning of Horse Domestication. Science. 2009;324:485–485. doi: 10.1126/science.1172750 19390039
64. Fehren-Schmitz L, Georges L. Ancient DNA reveals selection acting on genes associated with hypoxia response in pre-Columbian Peruvian Highlanders in the last 8500 years. Scientific Reports. 2016;6:23485–. doi: 10.1038/srep23485 26996763
65. Schraiber JG, Evans SN, Slatkin M. Bayesian Inference of Natural Selection from Allele Frequency Time Series. Genetics. 2016;203:493–511. doi: 10.1534/genetics.116.187278 27010022
66. Loog L, Thomas MG, Barnett R, Allen R, Sykes N, Paxinos PD, et al. Inferring Allele Frequency Trajectories from Ancient DNA Indicates That Selection on a Chicken Gene Coincided with Changes in Medieval Husbandry Practices. Molecular Biology and Evolution. 2017;34:1981–1990. doi: 10.1093/molbev/msx142 28444234
67. Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, McVean G, et al. Classic Selective Sweeps Were Rare in Recent Human Evolution. Science. 2011;331:920–924. doi: 10.1126/science.1198878 21330547
68. Wilson BA, Petrov DA, Messer PW. Soft Selective Sweeps in Complex Demographic Scenarios. Genetics. 2014;198:669–684. doi: 10.1534/genetics.114.165571 25060100
69. Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nature Reviews Genetics. 2007;8:762–775. doi: 10.1038/nrg2193 17846636
70. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, et al. A High-Coverage Genome Sequence from an Archaic Denisovan Individual. Science. 2012;338:222–226. doi: 10.1126/science.1224344 22936568
71. Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505:43–49. doi: 10.1038/nature12886 24352235
72. Bollongino R, Tresset A, Vigne J. Environment and excavation: Pre-lab impacts on ancient DNA analyses. Comptes Rendus Palevol. 2008;7:91–98. doi: 10.1016/j.crpv.2008.02.002
73. Skov L, Hui R, Shchur V, Hobolth A, Scally A, Schierup MH, et al. Detecting archaic introgression using an unadmixed outgroup. PLOS Genetics. 2018;14:1–15. doi: 10.1371/journal.pgen.1007641
74. Hubisz MJ, Williams AL, Siepel A. Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph. bioRxiv. 2019.
75. Wall JD, Ratan A, Stawiski E, Wall JD, Stawiski E, Ratan A, et al. Identification of African-Specific Admixture between Modern and Archaic Humans. The American Journal of Human Genetics. 2019;105:1254–1261. doi: 10.1016/j.ajhg.2019.11.005 31809748
76. Durvasula A, Sankararaman S. Recovering signals of ghost archaic introgression in African populations. Science Advances. 2020;6:1–9. doi: 10.1126/sciadv.aax5097
77. Schrider DR, Ayroles J, Matute DR, Kern AD. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia. PLOS Genetics. 2018 04;14:1–29. doi: 10.1371/journal.pgen.1007341
78. Sugden LA, Atkinson EG, Fischer AP, Rong S, Henn BM, Ramachandran S. Localization of adaptive variants in human genomes using averaged one-dependence estimation. Nature communications. 2018 Feb;9:703–703. doi: 10.1038/s41467-018-03100-7 29459739
79. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449:913 EP–. doi: 10.1038/nature06250 17943131
80. Chen H, Patterson N, Reich D. Population differentiation as a test for selective sweeps. Genome Research. 2010;20:393–402. doi: 10.1101/gr.100545.109 20086244
81. Sheehan S, Song YS. Deep Learning for Population Genetic Inference. PLoS Computational Biology. 2016;12:1–28. doi: 10.1371/journal.pcbi.1004845
82. Schrider DR, Kern AD. Discoal: flexible coalescent simulations with selection. Bioinformatics. 2016;32:3839–3841. doi: 10.1093/bioinformatics/btw556 27559153
83. Plagnol V, Wall JD. Possible Ancestral Structure in Human Populations. PLOS Genetics. 2006;2:1–8. doi: 10.1371/journal.pgen.0020105
84. Wall JD, Lohmueller KE, Plagnol V. Detecting ancient admixture and estimating demographic parameters in multiple human populations. Molecular biology and evolution. 2009;26:1823–1827. doi: 10.1093/molbev/msp096 19420049
85. Vernot B, Akey JM. Resurrecting Surviving Neandertal Lineages from Modern Human Genomes. Science. 2014;343:1017–1021. doi: 10.1126/science.1245938 24476670
86. Huerta-Sánchez E, Jin X, Asan Bianba Z, Peter BM, Vinckenbosch N, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 2014;512:194–197. doi: 10.1038/nature13408 25043035
87. Racimo F, Gokhman D, Fumagalli M, Ko A, Hansen T, Moltke I, et al. Archaic Adaptive Introgression in TBX15/WARS2. Molecular Biology and Evolution. 2016;34:509–524.
88. Racimo F, Marnetto D, Huerta-Sánchez E. Signatures of Archaic Adaptive Introgression in Present-Day Human Populations. Molecular Biology and Evolution. 2016;34(2):296–317.
89. Pennings PS, Hermisson J. Soft Sweeps III: The Signature of Positive Selection from Recurrent Mutation. PLOS Genetics. 2006;2:1–15. doi: 10.1371/journal.pgen.0020186
90. Rees JS, Castellano S, Andrés AM. The Genomics of Human Local Adaptation. Trends in Genetics. 2020;36:415–428. doi: 10.1016/j.tig.2020.03.006 32396835
91. Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signal Systems. 1989;2:303–314. doi: 10.1007/BF02551274
92. Gao W, Makkuva AV, Oh S, Viswanath P. Learning One-hidden-layer Neural Networks under General Input Distributions. In: Proceedings of Machine Learning Research. vol. 89 of Proceedings of Machine Learning Research; 2019. p. 1950–1959.
93. Daubechies I. Orthonormal wavelets of compactly supported wavelets. Communications on Pure and Applied Mathematics. 1988;41:909–996. doi: 10.1002/cpa.3160410705
94. Nason GP. Wavelet Methods in Statistics with R. 1st ed. New York, NY: Springer; 2008.
95. Crowley P. An intuitive guide to wavelets for economists. Helsinki, Finland: Bank of Finland research discussion papers; 2005.
96. Daubechies I. Orthonormal bases of compactly supported wavelets. ommunications on pure and applied math. 1988;11:909–996. doi: 10.1002/cpa.3160410705
97. Zhao Y, Ogden RT, Reiss PT. Wavelet-based LASSO in functional linear regression. Journal of computational and graphical statistics. 2012;21:600–617. doi: 10.1080/10618600.2012.679241 23794794
98. Hazewinkel M. Geometric progression, Encyclopedia of Mathematics. Kluwer Academic Publishers; 2001.
99. Mousavi SM, Sørensen H. Multinomial functional regression with wavelets and LASSO penalization. Econometrics and Statistics. 2017;1:150–166. doi: 10.1016/j.ecosta.2016.09.005
100. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software. 2010;33:1–22. doi: 10.18637/jss.v033.i01 20808728
101. Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. Genomic scans for selective sweeps using SNP data. Genome research. 2005;15:1566–1575. doi: 10.1101/gr.4252305 16251466
102. Takahata N. Allelic genealogy and human evolution. Molecular Biology and Evolution. 1993;10:2–22. 8450756
103. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–861. doi: 10.1038/nature06258 17943122
104. Kuhlwilm M, Gronau I, Hubisz MJ, de Filippo C, Prado-Martinez J, Kircher M, et al. Ancient gene flow from early modern humans into Eastern Neanderthals. Nature. 2016;530:429 EP–. doi: 10.1038/nature16544 26886800
105. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005 Aug;15:1034–1050. doi: 10.1101/gr.3715005 16024819
106. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012 Sep;22:1760–1774. doi: 10.1101/gr.135350.111 22955987
107. Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, et al. Assessing the Evolutionary Impact of Amino Acid Mutations in the Human Genome. PLoS Genetics. 2008;4:1–13. doi: 10.1371/journal.pgen.1000083
108. Hudson R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics. 2002;18:337–338. doi: 10.1093/bioinformatics/18.2.337 11847089
109. Derrien T, Estellé J, Marco Sola S, Knowles DG, Raineri E, Guigó R, et al. Fast Computation and Applications of Genome Mappability. PLoS ONE. 2012;7:1–16. doi: 10.1371/journal.pone.0030377
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 8
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Jak může lékárník přispět ke zvýšení bezpečnosti terapie kortikosteroidy a zbavit pacienty obav z jejich nežádoucích účinků?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Budou nanoléčiva lépe cílit na některé onkologické nemoci?
Nejčtenější v tomto čísle
- Genomic imprinting: An epigenetic regulatory system
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans