-
Články
- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane
Autoři: Melody Cools aff001; Simon Lissoir aff001; Elisabeth Bodo aff003; Judith Ulloa-Calzonzin aff004; Alexander DeLuna aff004; Isabelle Georis aff002; Bruno André aff001
Působiště autorů: Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, Gosselies, Belgium aff001; Métabolisme des micro-organismes modèles, LABIRIS, Brussels, Belgium aff002; Développement des bioprocédés et microbiologie appliquée, LABIRIS, Brussels, Belgium aff003; Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico aff004
Vyšlo v časopise: Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008966
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008966Souhrn
The vacuole of the yeast Saccharomyces cerevisiae plays an important role in nutrient storage. Arginine, in particular, accumulates in the vacuole of nitrogen-replete cells and is mobilized to the cytosol under nitrogen starvation. The arginine import and export systems involved remain poorly characterized, however. Furthermore, how their activity is coordinated by nitrogen remains unknown. Here we characterize Vsb1 as a novel vacuolar membrane protein of the APC (amino acid-polyamine-organocation) transporter superfamily which, in nitrogen-replete cells, is essential to active uptake and storage of arginine into the vacuole. A shift to nitrogen starvation causes apparent inhibition of Vsb1-dependent activity and mobilization of stored vacuolar arginine to the cytosol. We further show that this arginine export involves Ypq2, a vacuolar protein homologous to the human lysosomal cationic amino acid exporter PQLC2 and whose activity is detected only in nitrogen-starved cells. Our study unravels the main arginine import and export systems of the yeast vacuole and suggests that they are inversely regulated by nitrogen.
Klíčová slova:
Arginine – Cytosol – Lysosomes – Phenotypes – Vacuoles – Vesicles – Yeast – Radiolabeling
Zdroje
1. Li SC, Kane PM. The yeast lysosome-like vacuole: Endpoint and crossroads. Biochim Biophys Acta—Mol Cell Res. 2009;1793 : 650–663. doi: 10.1016/j.bbamcr.2008.08.003 18786576
2. Reggiori F, Klionsky DJ. Autophagic processes in yeast: Mechanism, machinery and regulation. Genetics. 2013;194 : 341–361. doi: 10.1534/genetics.112.149013 23733851
3. Winchester B, Vellodi A, Young E. The molecular basis of lysosomal storage diseases and their treatment. Biochem Soc Trans. 2000;28 : 150–154. doi: 10.1042/bst0280150 10816117
4. Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore SA, et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet. 1998;18 : 319–24. doi: 10.1038/ng0498-319 9537412
5. Jezegou A, Llinares E, Anne C, Kieffer-Jaquinod S, O’Regan S, Aupetit J, et al. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc Natl Acad Sci. 2012;109: E3434–E3443. doi: 10.1073/pnas.1211198109 23169667
6. Llinares E, Barry AO, André B. The AP-3 adaptor complex mediates sorting of yeast and mammalian PQ-loop-family basic amino acid transporters to the vacuolar/lysosomal membrane. Sci Rep. 2015;5 : 16665. doi: 10.1038/srep16665 26577948
7. Sekito T, Nakamura K, Manabe K, Tone J, Sato Y, Murao N, et al. Loss of ATP-dependent lysine uptake in the vacuolar membrane vesicles of Saccharomyces cerevisiae ypq1Δ mutant. Biosci Biotechnol Biochem. 2014;78 : 1199–202. doi: 10.1080/09168451.2014.918489 25229858
8. Manabe K, Kawano-Kawada M, Ikeda K, Sekito T, Kakinuma Y. Ypq3p-dependent histidine uptake by the vacuolar membrane vesicles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 2016;80 : 1125–30. doi: 10.1080/09168451.2016.1141041 26928127
9. Kawano-Kawada M, Manabe K, Ichimura H, Kimura T, Harada Y, Ikeda K, et al. A PQ-loop protein Ypq2 is involved in the exchange of arginine and histidine across the vacuolar membrane of Saccharomyces cerevisiae. Sci Rep. 2019;9 : 15018. doi: 10.1038/s41598-019-51531-z 31636363
10. Li M, Rong Y, Chuang Y-S, Peng D, Emr SD. Ubiquitin-dependent lysosomal membrane protein sorting and degradation. Mol Cell. 2015;57 : 467–478. doi: 10.1016/j.molcel.2014.12.012 25620559
11. Zhu L, Jorgensen JR, Li M, Chuang YS, Emr SD. ESCRTS function directly on the lysosome membrane to downregulate ubiquitinated lysosomal membrane proteins. Elife. 2017;6 : 1–20. doi: 10.7554/eLife.26403 28661397
12. Boller T, Dürr M, Wiemken A. Characterization of a specific transport system for arginine in isolated yeast vacuoles. Eur J Biochem. 1975;54 : 81–91. doi: 10.1111/j.1432-1033.1975.tb04116.x 238849
13. Shimazu M, Sekito T, Akiyama K, Ohsumi Y, Kakinuma Y. A family of basic amino acid transporters of the vacuolar membrane from Saccharomyces cerevisiae. J Biol Chem. 2005;280 : 4851–7. doi: 10.1074/jbc.M412617200 15572352
14. Sekito T, Chardwiriyapreecha S, Sugimoto N, Ishimoto M, Kawano-Kawada M, Kakinuma Y. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 2014;78 : 969–975. doi: 10.1080/09168451.2014.910095 25036121
15. Russnak R, Konczal D, McIntire SL. A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J Biol Chem. 2001;276 : 23849–57. doi: 10.1074/jbc.M008028200 11274162
16. Tone J, Yoshimura A, Manabe K, Murao N, Sekito T, Kawano-Kawada M, et al. Characterization of Avt1p as a vacuolar proton/amino acid antiporter in Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 2015;79 : 782–789. doi: 10.1080/09168451.2014.998621 25747199
17. Messenguy F, Colin D, ten Have JP. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur J Biochem. 1980;108 : 439–47. doi: 10.1111/j.1432-1033.1980.tb04740.x 6997042
18. Ohsumi Y, Kitamoto K, Anraku Y. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J Bacteriol. 1988;170 : 2676–82. doi: 10.1128/jb.170.6.2676-2682.1988 3286617
19. Dürr M, Urech K, Boller T, Wiemken A, Schwencke J, Nagy M. Sequestration of arginine by polyphosphate in vacuoles of yeast (Saccharomyces cerevisiae). Arch Microbiol. 1979;121 : 169–175. doi: 10.1007/BF00689982
20. Hothorn M, Neumann H, Lenherr ED, Wehner M, Rybin V, Hassa PO, et al. Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science. 2009;324 : 513–516. doi: 10.1126/science.1168120 19390046
21. Urech K, Dürr M, Boller T, Wiemken A, Schwencke J. Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae. Arch Microbiol. 1978;116 : 275–278. doi: 10.1007/BF00417851 348146
22. Okorokov LA, Lichko LP, Kulaev IS. Vacuoles: main compartments of potassium, magnesium, and phosphate ions in Saccharomyces carlsbergenis cells. J Bacteriol. 1980;144 : 661–5. doi: 10.1128/JB.144.2.661-665.1980 7430066
23. Stawiecka-Mirota M, Pokrzywa W, Morvan J, Zoladek T, Haguenauer-Tsapis R, Urban-Grimal D, et al. Targeting of Sna3p to the endosomal pathway depends on its interaction with Rsp5p and multivesicular body sorting on its ubiquitylation. Traffic. 2007;8 : 1280–1296. doi: 10.1111/j.1600-0854.2007.00610.x 17645729
24. De Block J, Szopinska A, Guerriat B, Dodzian J, Villers J, Hochstenbach J-F, et al. Yeast Pmp3p has an important role in plasma membrane organization. J Cell Sci. 2015;128 : 3646–3659. doi: 10.1242/jcs.173211 26303201
25. Cabrera M, Ungermann C. Purification and in vitro analysis of yeast vacuoles. 1st ed. Methods in Enzymology. 1st ed. 2008. pp. 177–96. doi: 10.1016/S0076-6879(08)03213-8
26. Tarsio M, Zheng H, Smardon AM, Martínez-Muñoz GA, Kane PM. Consequences of loss of Vph1 protein-containing vacuolar ATPases (V-ATPases) for overall cellular pH homeostasis. J Biol Chem. 2011;286 : 28089–28096. doi: 10.1074/jbc.M111.251363 21669878
27. Boller T, Dürr M, Wiemken A. Transport in isolated yeast vacuoles: Characterization of arginine permease. Methods in Enzymology. 1989. pp. 504–518. doi: 10.1016/0076-6879(89)74034-9 2698990
28. Ohsumi Y, Anraku Y. Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem. 1981;256 : 2079–82. 6450764
29. Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y. Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J Bacteriol. 1988;170 : 2683–6. doi: 10.1128/jb.170.6.2683-2686.1988 3131304
30. Gerasimaité R, Sharma S, Desfougeres Y, Schmidt A, Mayer A. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci. 2014;127 : 5093–5104. doi: 10.1242/jcs.159772 25315834
31. Mülleder M, Calvani E, Alam MT, Wang RK, Eckerstorfer F, Zelezniak A, et al. Functional metabolomics describes the yeast biosynthetic regulome. Cell. 2016;167 : 553–565.e12. doi: 10.1016/j.cell.2016.09.007 27693354
32. Brohée S, Barriot R, Moreau Y, André B. YTPdb: a wiki database of yeast membrane transporters. Biochim Biophys Acta. 2010;1798 : 1908–12. doi: 10.1016/j.bbamem.2010.06.008 20599686
33. Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y. Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics. 1997;145 : 627–35. doi: 10.1515/BC.2011.017 9055073
34. Wiederhold E, Gandhi T, Permentier HP, Breitling R, Poolman B, Slotboom DJ. The yeast vacuolar membrane proteome. Mol Cell Proteomics. 2009;8 : 380–92. doi: 10.1074/mcp.M800372-MCP200 19001347
35. Gournas C, Saliba E, Krammer E-M, Barthelemy C, Prévost M, André B. Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis. Mol Biol Cell. 2017;28 : 2819–2832. doi: 10.1091/mbc.E17-02-0104 28814503
36. Ghaddar K, Merhi A, Saliba E, Krammer E-M, Prévost M, André B. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases. Mol Cell Biol. 2014;34 : 4447–63. doi: 10.1128/MCB.00699-14 25266656
37. Wiemken A, Nurse P. Isolation and characterization of the amino-acid pools located within the cytoplasm and vacuoles of Candida utilis. Planta. 1973;109 : 293–306. doi: 10.1007/BF00387098 24474206
38. Cools M, Rompf M, Mayer A, André B. Measuring the activity of plasma membrane and vacuolar transporters in yeast. Yeast Systems Biology 2nd edition. 2019. pp. 247–261. doi: 10.1007/978-1-4939-9736-7_15 31602616
39. Oku M, Maeda Y, Kagohashi Y, Kondo T, Yamada M, Fujimoto T, et al. Evidence for ESCRT - and clathrin-dependent microautophagy. J Cell Biol. 2017;216 : 3263–3274. doi: 10.1083/jcb.201611029 28838958
40. McNally EK, Karim MA, Brett CL. Selective lysosomal transporter degradation by organelle membrane fusion. Dev Cell. 2017;40 : 151–167. doi: 10.1016/j.devcel.2016.11.024 28017618
41. Li M, Koshi T, Emr SD. Membrane-anchored ubiquitin ligase complex is required for the turnover of lysosomal membrane proteins. J Cell Biol. 2015;211 : 639–652. doi: 10.1083/jcb.201505062 26527740
42. Liu B, Du H, Rutkowski R, Gartner A, Wang X. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science. 2012;337 : 351–4. doi: 10.1126/science.1220281 22822152
43. Guan L, Kaback HR. Lessons from lactose permease. Annu Rev Biophys Biomol Struct. 2006;35 : 67–91. doi: 10.1146/annurev.biophys.35.040405.102005 16689628
44. Pisoni RL, Thoene JG, Christensen HN. Detection and characterization of carrier-mediated cationic amino acid transport in lysosomes of normal and cystinotic human fibroblasts. Role in therapeutic cystine removal? J Biol Chem. 1985;260 : 4791–8. 3921538
45. Pisoni RL, Thoene JG, Lemons RM, Christensen HN. Important differences in cationic amino acid transport by lysosomal system c and system y+ of the human fibroblast. J Biol Chem. 1987;262 : 15011–8. 3499437
46. Amick J, Tharkeshwar AK, Talaia G, Ferguson SM. PQLC2 recruits the C9orf72 complex to lysosomes in response to cationic amino acid starvation. J Cell Biol. 2020;219 : 1–30. doi: 10.1083/jcb.201906076 31851326
47. Bechet J, Greenson M, Wiame JM. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur J Biochem. 1970;12 : 31–9. doi: 10.1111/j.1432-1033.1970.tb00817.x 5434281
48. Grenson M, Acheroy B. Mutations affecting the activity and the regulation of the general amino-acid permease of Saccharomyces cerevisiae. Mol Gen Genet. 1982;188 : 261–265. doi: 10.1007/BF00332685 6759873
49. Garay E, Campos SE, González de la Cruz J, Gaspar AP, Jinich A, DeLuna A. High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genet. 2014;10. doi: 10.1371/journal.pgen.1004168 24586198
50. Ghaddar K, Krammer EM, Mihajlovic N, Brohée S, André B, Prévost M. Converting the yeast arginine Can1 permease to a lysine permease. J Biol Chem. 2014;289 : 7232–7246. doi: 10.1074/jbc.M113.525915 24448798
51. Fayyad-Kazan M, Feller A, Bodo E, Boeckstaens M, Marini AM, Dubois E, et al. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs. Mol Microbiol. 2016;99 : 360–379. doi: 10.1111/mmi.13236 26419331
52. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9 : 676–682. doi: 10.1038/nmeth.2019 22743772
53. Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol. 1995;128 : 779–792. doi: 10.1083/jcb.128.5.779 7533169
54. Orij R, Postmus J, Beek A Ter, Brul S, Smits GJ. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology. 2009;155 : 268–278. doi: 10.1099/mic.0.022038-0 19118367
55. Zimmermannova O, Salazar A, Sychrova H, Ramos J. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance. FEMS Yeast Res. 2015;15 : 1–11. doi: 10.1093/femsyr/fov029 26019147
56. Saliba E, Evangelinos M, Gournas C, Corrillon F, Georis I, André B. The yeast H+-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake. Elife. 2018;7: e31981. doi: 10.7554/eLife.31981 29570051
Článek A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer proteinČlánek A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individualsČlánek Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeastČlánek Costly GenesČlánek The roles of replication-transcription conflict in mutagenesis and evolution of genome organization
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 8- Pomůže AI k rychlejšímu vývoji antibiotik na kapavku a MRSA?
- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Kompetence lékárníků v Evropě – čím je možné se inspirovat
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Psilocybin a neurodegenerace: Kam míří současný výzkum?
-
Všechny články tohoto čísla
- Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific Salmon
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans
- Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeast
- Gα/GSA-1 works upstream of PKA/KIN-1 to regulate calcium signaling and contractility in the Caenorhabditis elegans spermatheca
- Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- Transcriptional regulators of the Golli/myelin basic protein locus integrate additive and stealth activities
- Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics
- DAnkrd49 and Bdbt act via Casein kinase Iε to regulate planar polarity in Drosophila
- Costly Genes
- Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences
- Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph
- Learning the properties of adaptive regions with functional data analysis
- Epistatic interactions between killer immunoglobulin-like receptors and human leukocyte antigen ligands are associated with ankylosing spondylitis
- Endogenization and excision of human herpesvirus 6 in human genomes
- A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli
- On the cross-population generalizability of gene expression prediction models
- How many familial relationship testing results could be wrong?
- Long noncoding RNA functionality in imprinted domain regulation
- Horizontal transmission and recombination maintain forever young bacterial symbiont genomes
- A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein
- Drosophila miR-87 promotes dendrite regeneration by targeting the transcriptional repressor Tramtrack69
- A general framework for functionally informed set-based analysis: Application to a large-scale colorectal cancer study
- THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis
- Cfap97d1 is important for flagellar axoneme maintenance and male mouse fertility
- Disruption of the ERLIN–TM6SF2–APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease
- Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing
- Mushroom body subsets encode CREB2-dependent water-reward long-term memory in Drosophila
- Replication of the Salmonella Genomic Island 1 (SGI1) triggered by helper IncC conjugative plasmids promotes incompatibility and plasmid loss
- Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane
- Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development
- Genomic imprinting: An epigenetic regulatory system
- Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins
- Sequential activation of Notch and Grainyhead gives apoptotic competence to Abdominal-B expressing larval neuroblasts in Drosophila Central nervous system
- Systematic identification of functional SNPs interrupting 3’UTR polyadenylation signals
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Gluconeogenesis and PEPCK are critical components of healthy aging and dietary restriction life extension
- Natural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model
- The roles of replication-transcription conflict in mutagenesis and evolution of genome organization
- Distinct and sequential re-replication barriers ensure precise genome duplication
- Drosophila Myc restores immune homeostasis of Imd pathway via activating miR-277 to inhibit imd/Tab2
- Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA
- Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p
- Quorum sensing sets the stage for the establishment and vertical transmission of Sodalis praecaptivus in tsetse flies
- Pan-genomic open reading frames: A potential supplement of single nucleotide polymorphisms in estimation of heritability and genomic prediction
- The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi
- Serotonergic modulation of visual neurons in Drosophila melanogaster
- Functional information from clinically-derived drug resistant forms of the Candida glabrata Pdr1 transcription factor
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Genomic imprinting: An epigenetic regulatory system
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Autoři: prof. MUDr. Hana Rosolová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání