-
Články
- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Loss of ferritin in developing wing cells: Apoptosis and ferroptosis coincide
Autoři: Anna Karen Hernández-Gallardo aff001; Fanis Missirlis aff001
Působiště autorů: Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, CDMX, México aff001
Vyšlo v časopise: Loss of ferritin in developing wing cells: Apoptosis and ferroptosis coincide. PLoS Genet 16(1): e32767. doi:10.1371/journal.pgen.1008503
Kategorie: Perspective
doi: https://doi.org/10.1371/journal.pgen.1008503
Zdroje
1. Mumbauer S, Pascual J, Kolotuev I, Hamaratoglu F. Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet. 2019; 15: e1008396. doi: 10.1371/journal.pgen.1008396 31568497
2. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149 : 1060–1072. doi: 10.1016/j.cell.2012.03.042 22632970
3. Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 2019; 572 : 402–406. doi: 10.1038/s41586-019-1426-6 31341276
4. Yang WH, Ding CC, Sun T, Rupprecht G, Lin CC, Hsu D, et al. The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma. Cell Rep. 2019; 28 : 2501–2508.e4. doi: 10.1016/j.celrep.2019.07.107 31484063
5. Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol. 2018; 9 : 50. doi: 10.3389/fphys.2018.00050 29491838
6. Missirlis F, Kosmidis S, Brody T, Mavrakis M, Holmberg S, Odenwald WF, et al. Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin. Genetics. 2007; 177 : 89–100. doi: 10.1534/genetics.107.075150 17603097
7. Tang X, Zhou B. Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J. 2013; 27 : 288–298. doi: 10.1096/fj.12-213595 23064556
8. González-Morales N, Mendoza-Ortíz MÁ, Blowes LM, Missirlis F, Riesgo-Escovar JR. Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development. PLoS ONE. 2015; 10: e0133499. doi: 10.1371/journal.pone.0133499 26192321
9. Zheng Y, Pan D. The Hippo Signaling Pathway in Development and Disease. Dev Cell. 2019; 50 : 264–282. doi: 10.1016/j.devcel.2019.06.003 31386861
10. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol. 2006; 8 : 27–36. doi: 10.1038/ncb1339 16341207
11. Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C, et al. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol. 2006; 16 : 2090–2100. doi: 10.1016/j.cub.2006.09.005 16996265
12. Pascual J, Jacobs J, Sansores-Garcia L, Natarajan M, Zeitlinger J, Aerts S, et al. Hippo Reprograms the Transcriptional Response to Ras Signaling. Dev Cell. 2017; 42 : 667–680.e4. doi: 10.1016/j.devcel.2017.08.013 28950103
13. Atkins M, Potier D, Romanelli L, Jacobs J, Mach J, Hamaratoglu F, et al. An Ectopic Network of Transcription Factors Regulated by Hippo Signaling Drives Growth and Invasion of a Malignant Tumor Model. Curr Biol. 2016; 26 : 2101–2113. doi: 10.1016/j.cub.2016.06.035 27476594
14. Morata G, Ripoll P. Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol. 1975; 42 : 211–221. doi: 10.1016/0012-1606(75)90330-9 1116643
15. Menéndez J, Pérez-Garijo A, Calleja M, Morata G. A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc Natl Acad Sci U S A. 2010; 107 : 14651–14656. doi: 10.1073/pnas.1009376107 20679206
16. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019; 133 : 130–143. doi: 10.1016/j.freeradbiomed.2018.09.043 30268886
17. Wang YQ, Chang SY, Wu Q, Gou YJ, Jia L, Cui YM, et al. The Protective Role of Mitochondrial Ferritin on Erastin-Induced Ferroptosis. Front Aging Neurosci. 2016; 8 : 308. doi: 10.3389/fnagi.2016.00308 28066232
18. Missirlis F, Holmberg S, Georgieva T, Dunkov BC, Rouault TA, Law JH. Characterization of mitochondrial ferritin in Drosophila. Proc Natl Acad Sci U S A. 2006; 103 : 5893–5898. doi: 10.1073/pnas.0601471103 16571656
19. Chen PH, Wu J, Ding CC, Lin CC, Pan S, Bossa N, et al. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 2019; doi: 10.1038/s41418-019-0393-7 31320750
20. Missirlis F, Rahlfs S, Dimopoulos N, Bauer H, Becker K, Hilliker A, et al. A putative glutathione peroxidase of Drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity. Biol Chem. 2003; 384 : 463–72. doi: 10.1515/BC.2003.052 12715897
21. Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature. 2009; 461 : 537–541. doi: 10.1038/nature08313 19727075
22. Yoon S, Cho B, Shin M, Koranteng F, Cha N, Shim J. Iron Homeostasis Controls Myeloid Blood Cell Differentiation in Drosophila. Mol Cells. 2017; 40 : 976–985. doi: 10.14348/molcells.2017.0287 29237257
23. Bersuker K, Hendricks J, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019; doi: 10.1038/s41586-019-1705-2 31634900
24. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019; doi: 10.1038/s41586-019-1707-0 31634899
25. Hamburger AE, West AP Jr, Hamburger ZA, Hamburger P, Bjorkman PJ. Crystal structure of a secreted insect ferritin reveals a symmetrical arrangement of heavy and light chains. J Mol Biol. 2005; 349 : 558–569. doi: 10.1016/j.jmb.2005.03.074 15896348
26. Gutiérrez L, Zubow K, Nield J, Gambis A, Mollereau B, Lázaro FJ, et al. Biophysical and genetic analysis of iron partitioning and ferritin function in Drosophila melanogaster. Metallomics. 2013; 5 : 997–1005. doi: 10.1039/c3mt00118k 23771129
27. Jiang XZ, Cong L, Niu JZ, Dou W, Wang JJ. Alternative splicing contributes to the coordinated regulation of ferritin subunit levels in Bactrocera dorsalis (Hendel). Sci Rep. 2014; 4 : 4806. doi: 10.1038/srep04806 24763285
28. Walter-Nuno AB, Taracena ML, Mesquita RD, Oliveira PL, Paiva-Silva GO. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus. Front Genet. 2018; 9 : 19. doi: 10.3389/fgene.2018.00019 29456553
29. Xiao G, Liu ZH, Zhao M, Wang HL, Zhou B. Transferrin 1 Functions in Iron Trafficking and Genetically Interacts with Ferritin in Drosophila melanogaster. Cell Rep. 2019; 26 : 748–758.e5. doi: 10.1016/j.celrep.2018.12.053 30650364
30. Mandilaras K, Missirlis F. Genes for iron metabolism influence circadian rhythms in Drosophila melanogaster. Metallomics. 2012; 4 : 928–936. doi: 10.1039/c2mt20065a 22885802
31. Rosas-Arellano A, Vásquez-Procopio J, Gambis A, Blowes LM, Steller H, Mollereau B, et al. Ferritin Assembly in Enterocytes of Drosophila melanogaster. Int J Mol Sci. 2016; 17 : 27. doi: 10.3390/ijms17020027 26861293
32. Zhang P, Pei C, Wang X, Xiang J, Sun BF, Cheng Y, et al. A Balance of Yki/Sd Activator and E2F1/Sd Repressor Complexes Controls Cell Survival and Affects Organ Size. Dev Cell. 2017; 43 : 603–617.e5. doi: 10.1016/j.devcel.2017.10.033 29207260
Štítky
Genetika Reprodukční medicína
Článek DNA double strand break repair in Escherichia coli perturbs cell division and chromosome dynamicsČlánek Dysfunction of Oskyddad causes Harlequin-type ichthyosis-like defects in Drosophila melanogaster
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 1
-
Všechny články tohoto čísla
- Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping
- Dysfunction of Oskyddad causes Harlequin-type ichthyosis-like defects in Drosophila melanogaster
- The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency
- DNA double strand break repair in Escherichia coli perturbs cell division and chromosome dynamics
- Loss of ferritin in developing wing cells: Apoptosis and ferroptosis coincide
- Dynamic and regulated TAF gene expression during mouse embryonic germ cell development
- Ligand dependent gene regulation by transient ERα clustered enhancers
- Sex biased expression and co-expression networks in development, using the hymenopteran Nasonia vitripennis
- Characterisation of canine KCNIP4: A novel gene for cerebellar ataxia identified by whole-genome sequencing two affected Norwegian Buhund dogs
- Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans
- ELF5 modulates the estrogen receptor cistrome in breast cancer
- Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation
- Genomic profiling of human vascular cells identifies TWIST1 as a causal gene for common vascular diseases
- The derived allele of a novel intergenic variant at chromosome 11 associates with lower body mass index and a favorable metabolic phenotype in Greenlanders
- Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation
- Low dose ionizing radiation strongly stimulates insertional mutagenesis in a γH2AX dependent manner
- Autophagy gene haploinsufficiency drives chromosome instability, increases migration, and promotes early ovarian tumors
- Mutations on ent-kaurene oxidase 1 encoding gene attenuate its enzyme activity of catalyzing the reaction from ent-kaurene to ent-kaurenoic acid and lead to delayed germination in rice
- Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing
- High-throughput discovery of genetic determinants of circadian misalignment
- RNA Binding Protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in oral cancer
- Makorin 1 controls embryonic patterning by alleviating Bruno1-mediated repression of oskar translation
- Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality
- Nexin-Dynein regulatory complex component DRC7 but not FBXL13 is required for sperm flagellum formation and male fertility in mice
- The epilepsy and intellectual disability-associated protein TBC1D24 regulates the maintenance of excitatory synapses and animal behaviors
- Loss of androgen signaling in mesenchymal sonic hedgehog responsive cells diminishes prostate development, growth, and regeneration
- The conserved transcriptional regulator CdnL is required for metabolic homeostasis and morphogenesis in Caulobacter
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Dynamic and regulated TAF gene expression during mouse embryonic germ cell development
- Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing
- Ligand dependent gene regulation by transient ERα clustered enhancers
- RNA Binding Protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in oral cancer
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Autoři: prof. MUDr. Hana Rosolová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání