-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaEarly Mortality Syndrome Outbreaks: A Microbial Management Issue in Shrimp Farming?
article has not abstract
Published in the journal: . PLoS Pathog 10(4): e32767. doi:10.1371/journal.ppat.1003919
Category: Opinion
doi: https://doi.org/10.1371/journal.ppat.1003919Summary
article has not abstract
A recent disease of farmed Penaeid shrimp, commonly referred to as “early mortality syndrome” (EMS) or more technically known as “acute hepatopancreatic necrosis disease” (AHPND), was first reported in southern China in 2010 and subsequently in Vietnam, Thailand, and Malaysia [1]. The EMS/AHPND disease typically affects shrimp postlarvae within 20–30 days after stocking and frequently causes up to 100% mortality. The Global Aquaculture Alliance [2] has estimated that losses to the Asian shrimp culture sector amount to USD 1 billion. The causative agent of EMS/AHPND has been reported to be a bacterium—more specifically a pathogenic Vibrio belonging to the Harveyi clade, presumably Vibrio parahaemolyticus [3]. So far, this has been the only description of a bacterial isolate capable of causing EMS/AHPND. Strategies to remedy this disease are urgently needed. However, as long as it remains unclear whether or not all incidences of EMS/AHPND are caused by one or more specific V. parahaemolyticus strains, approaches that focus on controlling the presence or activity of vibrios in general have the highest chance of decreasing the risk of EMS/AHPND outbreaks.
We argue that the proposed strategy of total disinfection of pond bottom and water to kill possible vectors of EMS/AHPND [1] may contribute to the epidemic spread of the EMS/AHPND disease rather than control it, and that microbial management strategies may be the key to minimizing the risk of EMS/AHPND outbreaks. We suggest stocking shrimp postlarvae in systems with a mature microbiota (such as algae-rich greenwaters and microbially matured water systems), as environments primarily colonized by slow-growing harmless bacteria might best guarantee the prevention of EMS/AHPND outbreaks.
The ecosystem disturbance caused by the current practice of disinfecting ponds to remove potential pathogens or their carriers prior to stocking shrimp postlarvae most probably does more harm than good. The increase in nutrient availability after disinfection combined with a destabilized and impoverished microbial community (and a consequent lack of competition) favors fast-growing bacteria (such as many pathogenic Vibrio spp.) in recolonizing the environment [4]. Considering that EMS/AHPND most probably is caused by a Vibrio, this practice is thus more likely to stimulate proliferation of the EMS/AHPND-causing agent in the pond than counteract it. In fact, important lessons can be learned from the outbreaks of luminescent vibriosis in the early 1990s. This disease was caused by Vibrio harveyi and closely related species—all belonging to the Harveyi clade of vibrios (and therefore closely related to the causative agent of EMS/AHPND) [5]. Luminescent vibriosis occurred during the first 10–45 days after stocking of shrimp postlarvae in the grow-out ponds. The outbreak of the disease was found to be preceded by a substantial increase in the number of opportunistic vibrios in the pond water [6], and this increase followed pond disinfection and was associated with a perturbed microbial community in combination with the presence of nutrients [6], [7].
In the last year, several remedies to control EMS/AHPND—mostly based on empirical observations—have been proposed on public discussion lists. It was for example stated that EMS/AHPND is less prevalent in ponds colonized by copepods (small crustaceans used as live feed for the larvae of aquaculture animals). Copepod presence is an indicator of a naturally mature/stable ecosystem, as it requires constant amounts of phytoplankton and bacteria as feed [8]. Alternatively, using greenwater technology has also been related with a lowered incidence of EMS/AHPND in practice. Greenwater systems (in contrast to clear water systems) are characterized by a mature micro-algal and bacterial community and have been shown before to result in decreased Vibrio levels and decreased animal mortality [9], [10]. Several mechanisms have been linked to the beneficial effect of greenwaters, including the algal production of antibacterial substances [11] and compounds that inhibit virulence gene regulation (e.g., quorum sensing inhibitors [12]). However, we think that the bacteria that are associated with the micro-algae should not be neglected either, as they might be able to compete with pathogens for available nutrients and to produce compounds affecting viability and/or activity of pathogens [13].
Similar to greenwater technology, microbially matured water systems have been developed to minimize the presence of pathogens that are able to grow fast and are consequently capable of quickly invading “empty” niches. The microbial maturity of water can be described based on the ecological theory of r/K selection [14]. Microbially matured water is characterized by a dominance of slow-growing bacteria with a limited nutrient supply per bacterium, the so-called K strategists. They eliminate the niches for fast growing bacteria, the r strategists, which include many disease-causing Vibrio spp. [4]. As such, K selective pressure in shrimp postlarvae culture systems may avoid proliferation of the vibrios causing EMS/AHPND. K selective pressure in grow-out ponds can be achieved by minimizing disturbances leading to sudden variations in nutrient levels in the rearing water during shrimp culture in order to keep nutrient supply per bacterium constant and low, and by colonizing the influent water with nonpathogenic bacteria and/or algae at a carrying capacity close to that of the rearing water [15]. In case pond disinfection is applied as a hygienic barrier, maturation of the pond water after flooding should be ensured prior to stocking, in order to prevent r strategists from dominating the system.
It needs to be stressed that the mature ecosystem approach aims at preventing EMS/AHPND and will not act as a curative treatment for EMS/AHPND-infected shrimp. In order to cure affected animals, one should develop and apply techniques that result in minimal disturbances of the nontarget microbiota in order to be compatible with microbially mature systems (Box 1). Finally, one should make sure that the larvae used for stocking are EMS/AHPND-free (e.g., by applying microbial management practices in hatcheries as well).
Box 1. EMS/AHPND Mitigation Strategies Should Be Compatible with Microbially Mature Ecosystems
The use of antibiotics and/or disinfectants would not only destroy microbially mature systems, it has also proven ineffective in treating diseases caused by luminescent vibrios (i.e., V. harveyi and closely related bacteria, which are closely related to the bacteria causing EMS/AHPND), and alternative methods have been proposed in this context [5]. Antivirulence therapy, i.e., disarming the pathogens (by affecting the expression of virulence genes) rather than killing them, could be a promising approach in this respect. Interestingly, we recently reported that the use of compounds that inhibit quorum sensing (bacterial cell-to-cell communication regulating the expression of virulence factors) significantly decreased the mortality of giant river prawn larvae caused by pathogenic V. harveyi [16]. Alternatively, biological agents that are only active at the site of infection (i.e., the gut) could be applied. Poly-β-hydroxybutyrate is an example of a natural compound that upon depolymerisation interferes with the energy metabolism of pathogenic cells, and it has been shown to control Vibrio presence in the gut of giant river prawn larvae [17]. However, unfortunately, these kinds of therapies are still in the research phase.
In conclusion, the recent outbreaks of EMS/AHPND suggest that modern intensive shrimp farming practices need to be critically reviewed. We argue that microbial management practices (including growing animals in microbially mature ecosystems and applying biocontrol strategies that are compatible with these systems) are currently largely neglected, even though they are a key factor in solving these problems.
Zdroje
1. FAO (2013) Report of the FAO/MARD Technical Workshop on Early Mortality Syndrome (EMS) or Acute Hepatopancreatic Necrosis Syndrome (AHPND) of Cultured Shrimp (under TCP/VIE/3304). Hanoi, Viet Nam, 25–27 June 2013. FAO Fisheries and Aquaculture Report No. 1053. Rome. 54 pp.
2. GAA (May 2013) Cause of EMS shrimp disease identified. GAA News Releases. Available: http://www.gaalliance.org/newsroom. Accessed 29 March 2014.
3. TranL, NunanL, RedmanRM, MohneyLL, PantojaCR, et al. (2013) Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ 105 : 45–55.
4. AttramadalKJK, SalvesenI, XueRY, ØieG, StorsethTR, et al. (2012) Recirculation as a possible microbial control strategy in the production of marine larvae. Aquac Eng 46 : 27–39.
5. DefoirdtT, BoonN, SorgeloosP, VerstraeteW, BossierP (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25 : 472–479.
6. Lavilla-PitogoCR, LeañoEM, PanerMG (1998) Mortalities of pond-cultured juvenile shrimp, Penaeus monodon, associated with dominance of luminescent vibrios in the rearing environment. Aquaculture 164 : 337–349.
7. BratvoldD, LuJ, BrowdyCL (1999) Disinfection, microbial community establishment and shrimp production in a prototype biosecure pond. J World Aquac Soc 30 : 422–432.
8. Støttrup JG (2003) Production and nutritional value of copepods. In: Støttrup JG, McEvoy LA, editors. Live feeds in marine aquaculture. Oxford: Blackwell Science Ltd. pp. 145–205.
9. Lio-PoGD, LeanoEM, PenarandaMD, Villa-FrancoAU, SombitoCD, GuanzonNGJr (2005) Anti-luminous Vibrio factors associated with the green water grow-out culture of the tiger shrimp Penaeus monodon. Aquaculture 250 : 1–7.
10. TendenciaEA, Dela PeñaMR (2010) Effect of different sizes of saline red tilapia hybrid Oreochromis niloticus x O. mossambicus on the growth of luminous bacteria Vibrio harveyi. Philipp Agric Sci 93 : 463–467.
11. KokouF, MakridisP, KentouriM, DivanachP (2012) Antibacterial activity in microalgae cultures. Aquac Res 43 : 1520–1527.
12. NatrahFMI, KenmegneMM, WiyotoW, SorgeloosP, BossierP, et al. (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317 : 53–57.
13. NatrahFMI, BossierP, SorgeloosP, YusoffFM, DefoirdtT (2014) Significance of microalgal-bacterial interactions for aquaculture. Reviews in Aquaculture 6 : 48–61.
14. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton: Princeton University Press. 205 p.
15. SkjermoJ, SalvesenI, ØieG, OlsenY, VadsteinO (1997) Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae. Aquac Int 5 : 13–28.
16. PandeGSJ, ScheieAA, BennecheT, WilleM, SorgeloosP, et al. (2012) Quorum sensing-disrupting compounds protect larvae of the giant freshwater prawn Macrobrachium rosenbergii from Vibrio harveyi infection. Aquaculture 406 : 121–124.
17. NhanDT, WilleM, De SchryverP, DefoirdtT, BossierP, et al. (2010) The effect of poly-β-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 302 : 76–81.
Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř
Článek Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral MalariaČlánek The Transcriptional Activator LdtR from ‘ Liberibacter asiaticus’ Mediates Osmotic Stress ToleranceČlánek Complement-Related Proteins Control the Flavivirus Infection of by Inducing Antimicrobial PeptidesČlánek Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 ActivationČlánek Parasite Fate and Involvement of Infected Cells in the Induction of CD4 and CD8 T Cell Responses to
Článek vyšel v časopisePLOS Pathogens
Nejčtenější tento týden
2014 Číslo 4- Jak souvisí postcovidový syndrom s poškozením mozku?
- Měli bychom postcovidový syndrom léčit antidepresivy?
- Farmakovigilanční studie perorálních antivirotik indikovaných v léčbě COVID-19
- 10 bodů k očkování proti COVID-19: stanovisko České společnosti alergologie a klinické imunologie ČLS JEP
-
Všechny články tohoto čísla
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?
- Early Mortality Syndrome Outbreaks: A Microbial Management Issue in Shrimp Farming?
- Wormholes in Host Defense: How Helminths Manipulate Host Tissues to Survive and Reproduce
- Plastic Proteins and Monkey Blocks: How Lentiviruses Evolved to Replicate in the Presence of Primate Restriction Factors
- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria
- Noncanonical Role for the Host Vps4 AAA+ ATPase ESCRT Protein in the Formation of Replicase
- Efficient Parvovirus Replication Requires CRL4-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA
- Host-to-Pathogen Gene Transfer Facilitated Infection of Insects by a Pathogenic Fungus
- The Transcriptional Activator LdtR from ‘ Liberibacter asiaticus’ Mediates Osmotic Stress Tolerance
- Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers
- TCR Affinity Associated with Functional Differences between Dominant and Subdominant SIV Epitope-Specific CD8 T Cells in Rhesus Monkeys
- Coxsackievirus-Induced miR-21 Disrupts Cardiomyocyte Interactions via the Downregulation of Intercalated Disk Components
- Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells
- Kind Discrimination and Competitive Exclusion Mediated by Contact-Dependent Growth Inhibition Systems Shape Biofilm Community Structure
- Structural Differences Explain Diverse Functions of Actins
- HSCARG Negatively Regulates the Cellular Antiviral RIG-I Like Receptor Signaling Pathway by Inhibiting TRAF3 Ubiquitination Recruiting OTUB1
- Vaginitis: When Opportunism Knocks, the Host Responds
- Complement-Related Proteins Control the Flavivirus Infection of by Inducing Antimicrobial Peptides
- Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation
- Microbial Pathogens Trigger Host DNA Double-Strand Breaks Whose Abundance Is Reduced by Plant Defense Responses
- Alveolar Macrophages Are Essential for Protection from Respiratory Failure and Associated Morbidity following Influenza Virus Infection
- An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses
- Concerted Spatio-Temporal Dynamics of Imported DNA and ComE DNA Uptake Protein during Gonococcal Transformation
- Potent Dengue Virus Neutralization by a Therapeutic Antibody with Low Monovalent Affinity Requires Bivalent Engagement
- Regulation of Human T-Lymphotropic Virus Type I Latency and Reactivation by HBZ and Rex
- Functionally Redundant RXLR Effectors from Act at Different Steps to Suppress Early flg22-Triggered Immunity
- The Pathogenic Mechanism of the Virulence Factor, Mycolactone, Depends on Blockade of Protein Translocation into the ER
- Role of Calmodulin-Calmodulin Kinase II, cAMP/Protein Kinase A and ERK 1/2 on -Induced Apoptosis of Head Kidney Macrophages
- An Overview of Respiratory Syncytial Virus
- First Experimental Model of Enhanced Dengue Disease Severity through Maternally Acquired Heterotypic Dengue Antibodies
- Binding of Glutathione to Enterovirus Capsids Is Essential for Virion Morphogenesis
- IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-Endosome Hemifusion
- Parasite Fate and Involvement of Infected Cells in the Induction of CD4 and CD8 T Cell Responses to
- Deficient IFN Signaling by Myeloid Cells Leads to MAVS-Dependent Virus-Induced Sepsis
- Pernicious Pathogens or Expedient Elements of Inheritance: The Significance of Yeast Prions
- The HMW1C-Like Glycosyltransferases—An Enzyme Family with a Sweet Tooth for Simple Sugars
- The Expanding Functions of Cellular Helicases: The Tombusvirus RNA Replication Enhancer Co-opts the Plant eIF4AIII-Like AtRH2 and the DDX5-Like AtRH5 DEAD-Box RNA Helicases to Promote Viral Asymmetric RNA Replication
- Mining Herbaria for Plant Pathogen Genomes: Back to the Future
- Inferring Influenza Infection Attack Rate from Seroprevalence Data
- A Human Lung Xenograft Mouse Model of Nipah Virus Infection
- Mast Cells Expedite Control of Pulmonary Murine Cytomegalovirus Infection by Enhancing the Recruitment of Protective CD8 T Cells to the Lungs
- Cytosolic Peroxidases Protect the Lysosome of Bloodstream African Trypanosomes from Iron-Mediated Membrane Damage
- Abortive T Follicular Helper Development Is Associated with a Defective Humoral Response in -Infected Macaques
- JC Polyomavirus Infection Is Strongly Controlled by Human Leucocyte Antigen Class II Variants
- Cationic Antimicrobial Peptides Promote Microbial Mutagenesis and Pathoadaptation in Chronic Infections
- Estimating the Fitness Advantage Conferred by Permissive Neuraminidase Mutations in Recent Oseltamivir-Resistant A(H1N1)pdm09 Influenza Viruses
- Progressive Accumulation of Activated ERK2 within Highly Stable ORF45-Containing Nuclear Complexes Promotes Lytic Gammaherpesvirus Infection
- Caspase-1-Like Regulation of the proPO-System and Role of ppA and Caspase-1-Like Cleaved Peptides from proPO in Innate Immunity
- Is Required for High Efficiency Viral Replication
- Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway
- Evidence That Bank Vole PrP Is a Universal Acceptor for Prions
- Rapid Response to Selection, Competitive Release and Increased Transmission Potential of Artesunate-Selected Malaria Parasites
- Inactivation of Genes for Antigenic Variation in the Relapsing Fever Spirochete Reduces Infectivity in Mice and Transmission by Ticks
- Exposure-Dependent Control of Malaria-Induced Inflammation in Children
- A Neutralizing Anti-gH/gL Monoclonal Antibody Is Protective in the Guinea Pig Model of Congenital CMV Infection
- The Apical Complex Provides a Regulated Gateway for Secretion of Invasion Factors in
- A Highly Conserved Haplotype Directs Resistance to Toxoplasmosis and Its Associated Caspase-1 Dependent Killing of Parasite and Host Macrophage
- A Quantitative High-Resolution Genetic Profile Rapidly Identifies Sequence Determinants of Hepatitis C Viral Fitness and Drug Sensitivity
- Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing
- PLOS Pathogens
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?
- Efficient Parvovirus Replication Requires CRL4-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA
- An Overview of Respiratory Syncytial Virus
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Autoři: prof. MUDr. Hana Rosolová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání