Alphaherpesvirus infection of mice primes PNS neurons to an inflammatory state regulated by TLR2 and type I IFN signaling

Autoři: Kathlyn Laval aff001;  Jolien Van Cleemput aff001;  Jonah B. Vernejoul aff001;  Lynn W. Enquist aff001
Působiště autorů: Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America aff001
Vyšlo v časopise: Alphaherpesvirus infection of mice primes PNS neurons to an inflammatory state regulated by TLR2 and type I IFN signaling. PLoS Pathog 15(11): e32767. doi:10.1371/journal.ppat.1008087
Kategorie: Research Article
doi: 10.1371/journal.ppat.1008087


Pseudorabies virus (PRV), an alphaherpesvirus closely related to Varicella-Zoster virus (VZV) and Herpes simplex type 1 (HSV1) infects mucosa epithelia and the peripheral nervous system (PNS) of its host. We previously demonstrated that PRV infection induces a specific and lethal inflammatory response, contributing to severe neuropathy in mice. So far, the mechanisms that initiate this neuroinflammation remain unknown. Using a mouse footpad inoculation model, we found that PRV infection rapidly and simultaneously induces high G-CSF and IL-6 levels in several mouse tissues, including the footpad, PNS and central nervous system (CNS) tissues. Interestingly, this global increase occurred before PRV had replicated in dorsal root ganglia (DRGs) neurons and also was independent of systemic inflammation. These high G-CSF and IL-6 levels were not caused by neutrophil infiltration in PRV infected tissues, as we did not detect any neutrophils. Efficient PRV replication and spread in the footpad was sufficient to activate DRGs to produce cytokines. Finally, by using knockout mice, we demonstrated that TLR2 and IFN type I play crucial roles in modulating the early neuroinflammatory response and clinical outcome of PRV infection in mice. Overall, these results give new insights into the initiation of virus-induced neuroinflammation during herpesvirus infections.

Klíčová slova:

Cytokines – Immune receptor signaling – Inflammation – Neurons – Respiratory infections – Swine – Toll-like receptors – Viral replication


1. Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiology and molecular biology reviews: MMBR. 2005;69(3):462–500. doi: 10.1128/MMBR.69.3.462-500.2005 16148307

2. Wittmann G RH-J. Aujeszky’s disease (pseudorabies) in pigs.1989. p230-325.

3. Verpoest S, Cay B, Favoreel H, De Regge N. Age-Dependent Differences in Pseudorabies Virus Neuropathogenesis and Associated Cytokine Expression. Journal of virology. 2017;91(2).

4. Cramer SD, Campbell GA, Njaa BL, Morgan SE, Smith SK 2nd, McLin WRt, et al. Pseudorabies virus infection in Oklahoma hunting dogs. Journal of veterinary diagnostic investigation: official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 2011;23(5):915–23.

5. Field HJ, Hill TJ. The pathogenesis of pseudorabies in mice following peripheral inoculation. The Journal of general virology. 1974;23(2):145–57. doi: 10.1099/0022-1317-23-2-145 4833604

6. Brittle EE, Reynolds AE, Enquist LW. Two modes of pseudorabies virus neuroinvasion and lethality in mice. Journal of virology. 2004;78(23):12951–63. doi: 10.1128/JVI.78.23.12951-12963.2004 15542647

7. Shope RE. An experimental study of "mad itch" with especial reference to its relationship to Pseudorabies. The Journal of experimental medicine. 1931;54(2):233–48. doi: 10.1084/jem.54.2.233 19869913

8. Laval K, Vernejoul JB, Van Cleemput J, Koyuncu OO, Enquist LW. Virulent Pseudorabies Virus Infection Induces a Specific and Lethal Systemic Inflammatory Response in Mice. Journal of virology. 2018;92(24).

9. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology. 2014;6(10):a016295. doi: 10.1101/cshperspect.a016295 25190079

10. Yang P, Wen H, Ou S, Cui J, Fan D. IL-6 promotes regeneration and functional recovery after cortical spinal tract injury by reactivating intrinsic growth program of neurons and enhancing synapse formation. Experimental neurology. 2012;236(1):19–27. doi: 10.1016/j.expneurol.2012.03.019 22504113

11. Li L, Klebe D, Doycheva D, McBride DW, Krafft PR, Flores J, et al. G-CSF ameliorates neuronal apoptosis through GSK-3beta inhibition in neonatal hypoxia-ischemia in rats. Experimental neurology. 2015;263:141–9. doi: 10.1016/j.expneurol.2014.10.004 25448005

12. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. The Journal of clinical investigation. 2005;115(8):2083–98. doi: 10.1172/JCI23559 16007267

13. Tsai RK, Chang CH, Sheu MM, Huang ZL. Anti-apoptotic effects of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells after optic nerve crush are PI3K/AKT-dependent. Experimental eye research. 2010;90(5):537–45. doi: 10.1016/j.exer.2010.01.004 20144610

14. Diner BA, Lum KK, Toettcher JE, Cristea IM. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection. mBio. 2016;7(6).

15. Kawai T, Akira S. TLR signaling. Cell Death & Differentiation. 2006;13(5):816–25.

16. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(5):1315–20. doi: 10.1073/pnas.0308057100 14739339

17. Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. Journal of immunology (Baltimore, Md: 1950). 2005;175(7):4189–93.

18. Jung WJ, Lee SY, Choi SI, Kim BK, Lee EJ, In KH, et al. Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model. PloS one. 2018;13(3):e0193117. doi: 10.1371/journal.pone.0193117 29518161

19. Rietdijk CD, Van Wezel R.J.A, Garssen J., Kraneveld A. D. Neuronal toll-like receptors and neuro-immunity in Parkinson's disease, Alzheimer's disease and stroke. Neuroimmunol Neuroinflammation 2016;3:27–37.

20. Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, et al. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. The Journal of biological chemistry. 2007;282(20):14975–83. doi: 10.1074/jbc.M607277200 17355971

21. Samuel CE. Antiviral actions of interferons. Clinical microbiology reviews. 2001;14(4):778–809, table of contents. doi: 10.1128/CMR.14.4.778-809.2001 11585785

22. Sen GC. Viruses and interferons. Annual review of microbiology. 2001;55:255–81. doi: 10.1146/annurev.micro.55.1.255 11544356

23. Brukman A, Enquist LW. Suppression of the interferon-mediated innate immune response by pseudorabies virus. Journal of virology. 2006;80(13):6345–56. doi: 10.1128/JVI.00554-06 16775323

24. Lamote JA, Kestens M, Van Waesberghe C, Delva J, De Pelsmaeker S, Devriendt B, et al. The Pseudorabies Virus Glycoprotein gE/gI Complex Suppresses Type I Interferon Production by Plasmacytoid Dendritic Cells. Journal of virology. 2017;91(7).

25. Card JP, Whealy ME, Robbins AK, Moore RY, Enquist LW. Two alpha-herpesvirus strains are transported differentially in the rodent visual system. Neuron. 1991;6(6):957–69. doi: 10.1016/0896-6273(91)90236-s 1711350

26. Curanović D, Lyman MG, Bou-Abboud C, Card JP, Enquist LW. Repair of the UL21 Locus in Pseudorabies Virus Bartha Enhances the Kinetics of Retrograde, Transneuronal Infection In Vitro and In Vivo. Journal of virology. 2009;83(3):1173–83. doi: 10.1128/JVI.02102-08 19019952

27. Curanovic D, Enquist LW. Virion-incorporated glycoprotein B mediates transneuronal spread of pseudorabies virus. Journal of virology. 2009;83(16):7796–804. doi: 10.1128/JVI.00745-09 19494011

28. Favoreel HW, Van Minnebruggen G, Nauwynck HJ, Enquist LW, Pensaert MB. A tyrosine-based motif in the cytoplasmic tail of pseudorabies virus glycoprotein B is important for both antibody-induced internalization of viral glycoproteins and efficient cell-to-cell spread. Journal of virology. 2002;76(13):6845–51. doi: 10.1128/JVI.76.13.6845-6851.2002 12050399

29. McCarthy KM, Tank DW, Enquist LW. Pseudorabies virus infection alters neuronal activity and connectivity in vitro. PLoS pathogens. 2009;5(10):e1000640. doi: 10.1371/journal.ppat.1000640 19876391

30. Granstedt AE, Bosse JB, Thiberge SY, Enquist LW. In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(37):E3516–25. doi: 10.1073/pnas.1311062110 23980169

31. Cai M, Li M, Wang K, Wang S, Lu Q, Yan J, et al. The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-kappaB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway. PloS one. 2013;8(1):e54586. doi: 10.1371/journal.pone.0054586 23382920

32. Leoni V, Gianni T, Salvioli S, Campadelli-Fiume G. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-kappaB. Journal of virology. 2012;86(12):6555–62. doi: 10.1128/JVI.00295-12 22496225

33. Kim D, You B, Lim H, Lee SJ. Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury. Molecular pain. 2011;7:74. doi: 10.1186/1744-8069-7-74 21951975

34. Chen Z, Li R, Xie Z, Huang G, Yuan Q, Zeng J. IL-6, IL-10 and IL-13 are associated with pathogenesis in children with Enterovirus 71 infection. Int J Clin Exp Med. 2014;7(9):2718–23. 25356130

35. Klimstra WB, Ryman KD, Bernard KA, Nguyen KB, Biron CA, Johnston RE. Infection of neonatal mice with sindbis virus results in a systemic inflammatory response syndrome. Journal of virology. 1999;73(12):10387–98. 10559357

36. Liu Q, Zhou Y-h, Yang Z-q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13(1):3–10. doi: 10.1038/cmi.2015.74 26189369

37. Zhang Y, Li J, Zhan Y, Wu L, Yu X, Zhang W, et al. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun. 2004;72(8):4410–5. doi: 10.1128/IAI.72.8.4410-4415.2004 15271897

38. Kluge JP, Beran GW, Hill HT, Platt KB. 1999. Pseudorabies (Aujeszky's disease). In Straw B. E., D'Allaire S., Mengeling W. L., and Taylor T. J. (ed.), Diseases of swine, 8th ed. Iowa State University Press, Ames, Iowa. p. 233–246.

39. Verpoest S, Cay B, Favoreel H, De Regge N. 2017. Age-dependent differences in Pseudorabies virus pathogenesis and associated cytokine expression. J Virol 91(2): e02058–16. doi: 10.1128/JVI.02058-16 27852848

40. Nishio Y, Koda M, Kamada T, Someya Y, Kadota R, Mannoji C, et al. Granulocyte colony-stimulating factor attenuates neuronal death and promotes functional recovery after spinal cord injury in mice. Journal of neuropathology and experimental neurology. 2007;66(8):724–31. doi: 10.1097/nen.0b013e3181257176 17882016

41. Krames ES. The role of the dorsal root ganglion in the development of neuropathic pain. Pain medicine (Malden, Mass). 2014;15(10):1669–85.

42. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52(1):77–92. doi: 10.1016/j.neuron.2006.09.021 17015228

43. Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and Therapeutic Relevance of Neuro-immune Communication. Immunity. 2017;46(6):927–42. doi: 10.1016/j.immuni.2017.06.008 28636960

44. Zheng JH, Walters ET, Song XJ. Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP. Journal of neurophysiology. 2007;97(1):15–25. doi: 10.1152/jn.00559.2006 17021029

45. Lim JY, Choi S-I, Choi G, Hwang SW. Atypical sensors for direct and rapid neuronal detection of bacterial pathogens. Mol Brain. 2016;9:26–. doi: 10.1186/s13041-016-0202-x 26960533

46. Basso L, Lapointe TK, Iftinca M, Marsters C, Hollenberg MD, Kurrasch DM, et al. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(42):11235–40. doi: 10.1073/pnas.1706053114 28973941

47. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9. doi: 10.1038/nature01321 12490958

48. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. The Journal of experimental medicine. 2012;209(6):1057–68. doi: 10.1084/jem.20120571 22665702

49. Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(21):E4843–e52. doi: 10.1073/pnas.1719083115 29735654

50. Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, et al. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS pathogens. 2011;7(10):e1002282. doi: 10.1371/journal.ppat.1002282 22022263

51. Song R, Koyuncu OO, Greco TM, Diner BA, Cristea IM, Enquist LW. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion. mBio. 2016;7(1):e02145–15. doi: 10.1128/mBio.02145-15 26838720

52. Liu CC, Gao YJ, Luo H, Berta T, Xu ZZ, Ji RR, et al. Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions. Scientific reports. 2016;6:34356. doi: 10.1038/srep34356 27670299

53. Platt KB, Mare CJ, Hinz PN. Differentiation of vaccine strains and field isolates of pseudorabies (Aujeszky's disease) virus: thermal sensitivity and rabbit virulence markers. Archives of virology. 1979;60(1):13–23. doi: 10.1007/bf01318093 226030

54. Bartha A. Experimental reduction of virulence of Aujeszky's disease virus. Magy Allatorv Lapja. 1961;16:42–5.

55. Dijkstra JM, Gerdts V, Klupp BG, Mettenleiter TC. Deletion of glycoprotein gM of pseudorabies virus results in attenuation for the natural host. Journal of General Virology. 1997;78(9):2147–51.

56. Robbins AK, Ryan JP, Whealy ME, Enquist LW. The gene encoding the gIII envelope protein of pseudorabies virus vaccine strain Bartha contains a mutation affecting protein localization. Journal of virology. 1989;63(1):250–8. 2535731

57. Klupp BG, Lomniczi B., Visser N., Fuchs W., and Mettenleiter T.C Mutations affecting the UL21 gene contribute to avirulence of pseudorabies virus vaccine strain Bartha. Virology 1995;212:466–73. doi: 10.1006/viro.1995.1504 7571416

58. Lomniczi B, Watanabe S, Ben-Porat T, Kaplan AS. Genome location and identification of functions defective in the Bartha vaccine strain of pseudorabies virus. Journal of virology. 1987;61(3):796–801. 3027406

59. Ono E, Tasaki T, Kobayashi T, Taharaguchi S, Nikami H, Miyoshi I, et al. Resistance to Pseudorabies Virus Infection in Transgenic Mice Expressing the Chimeric Transgene That Represses the Immediate-Early Gene Transcription. Virology. 1999;262(1):72–8. doi: 10.1006/viro.1999.9899 10489342

60. Tombácz D, Tóth JS, Petrovszki P, Boldogkői Z. Whole-genome analysis of pseudorabies virus gene expression by real-time quantitative RT-PCR assay. BMC Genomics. 2009;10(1):491.

61. Koyuncu OO, MacGibeny MA, Hogue IB, Enquist LW. Compartmented neuronal cultures reveal two distinct mechanisms for alpha herpesvirus escape from genome silencing. PLoS pathogens. 2017;13(10):e1006608. doi: 10.1371/journal.ppat.1006608 29073268

Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens

2019 Číslo 11

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Zvyšte si kvalifikaci online z pohodlí domova

Snímatelné zubní náhrady a fixační krémy
nový kurz
Autoři: doc. MUDr. Hana Hubálková, Ph.D.

Nová éra v léčbě migrény
Autoři: MUDr. Eva Medová, MUDr. Tomáš Nežádal, Ph.D.

Význam nutraceutik u kardiovaskulárních onemocnění

Pěnová skleroterapie
Autoři: MUDr. Marek Šlais


Všechny kurzy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se