N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence


Autoři: Miriam Marín-Menguiano aff001;  Ismael Moreno-Sánchez aff001;  Ramón R. Barrales aff001;  Alfonso Fernández-Álvarez aff001;  José Ignacio Ibeas aff001
Působiště autorů: Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Ctra. Utrera km.1, Seville, Spain aff001
Vyšlo v časopise: N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence. PLoS Pathog 15(11): e32767. doi:10.1371/journal.ppat.1007687
Kategorie: Research Article
doi: 10.1371/journal.ppat.1007687

Souhrn

Fungal pathogenesis depends on accurate secretion and location of virulence factors which drive host colonization. Protein glycosylation is a common posttranslational modification of cell wall components and other secreted factors, typically required for correct protein localization, secretion and function. Thus, the absence of glycosylation is associated with animal and plant pathogen avirulence. While the relevance of protein glycosylation for pathogenesis has been well established, the main glycoproteins responsible for the loss of virulence observed in glycosylation-defective fungi have not been identified. Here, we devise a proteomics approach to identify such proteins and use it to demonstrate a role for the highly conserved protein disulfide isomerase Pdi1 in virulence. We show that efficient Pdi1 N-glycosylation, which promotes folding into the correct protein conformation, is required for full pathogenic development of the corn smut fungus Ustilago maydis. Remarkably, the observed virulence defects are reminiscent of those seen in glycosylation-defective cells suggesting that the N-glycosylation of Pdi1 is necessary for the full secretion of virulence factors. All these observations, together with the fact that Pdi1 protein and RNA expression levels rise upon virulence program induction, suggest that Pdi1 glycosylation is important for normal pathogenic development in U. maydis. Our results provide new insights into the role of glycosylation in fungal pathogenesis.

Klíčová slova:

Glycoproteins – Glycosylation – Maize – Plant cell walls – Plant fungal pathogens – Plant pathogens – Virulence factors – Ustilago maydis


Zdroje

1. Helenius A, Aebi M. Roles of N-Linked Glycans in the Endoplasmic Reticulum. Annu Rev Biochem. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303–0139, USA; 2004;73: 1019–1049. doi: 10.1146/annurev.biochem.73.011303.073752 15189166

2. Corfield AP, Berry M. Glycan variation and evolution in the eukaryotes. Trends Biochem Sci. 2015;40: 351–359. doi: 10.1016/j.tibs.2015.04.004 26002999

3. Freeze HH, Eklund EA, Ng BG, Patterson MC. Neurological Aspects of Human Glycosylation Disorders. Annu Rev Neurosci. 2015;38: 105–125. doi: 10.1146/annurev-neuro-071714-034019 25840006

4. Fernandez-Alvarez A, Elias-Villalobos A, Ibeas JI. The O-mannosyltransferase PMT4 is essential for normal appressorium formation and penetration in Ustilago maydis. Plant Cell. 2009;21: 3397–3412. doi: 10.1105/tpc.109.065839 19880800

5. Fernandez-Alvarez A, Elias-Villalobos A, Jimenez-Martin A, Marin-Menguiano M, Ibeas JI. Endoplasmic reticulum glucosidases and protein quality control factors cooperate to establish biotrophy in Ustilago maydis. Plant Cell. 2013;25: 4676–4690. doi: 10.1105/tpc.113.115691 24280385

6. Olson GM, Fox DS, Wang P, Alspaugh JA, Buchanan KL. Role of protein O-mannosyltransferase Pmt4 in the morphogenesis and virulence of Cryptococcus neoformans. Eukaryot Cell. 2007;6: 222–34. doi: 10.1128/EC.00182-06 17142566

7. Rouabhia M, Schaller M, Corbucci C, Vecchiarelli A, Prill SK-H, Giasson L, et al. Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases. Infect Immun. 2005;73: 4571–80. doi: 10.1128/IAI.73.8.4571-4580.2005 16040968

8. Schirawski J, Bohnert HU, Steinberg G, Snetselaar K, Adamikowa L, Kahmann R. Endoplasmic Reticulum Glucosidase II Is Required for Pathogenicity of Ustilago maydis. Plant Cell. 2005;17: 3532–3543. doi: 10.1105/tpc.105.036285 16272431

9. Schwarz F, Aebi M. Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol. 2011;21: 576–582. doi: 10.1016/j.sbi.2011.08.005 21978957

10. Breitling J, Aebi M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2013;5: a013359. doi: 10.1101/cshperspect.a013359 23751184

11. Loibl M, Strahl S. Protein O-mannosylation: What we have learned from baker’s yeast. Biochim Biophys Acta—Mol Cell Res. 2013;1833: 2438–2446. doi: 10.1016/j.bbamcr.2013.02.008 23434682

12. Fabre E, Hurtaux T, Fradin C. Mannosylation of fungal glycoconjugates in the Golgi apparatus. Curr Opin Microbiol. 2014;20: 103–10. doi: 10.1016/j.mib.2014.05.008 24934559

13. Hall RA, Gow NAR. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol Microbiol. 2013;90: 1147–1161. doi: 10.1111/mmi.12426 24125554

14. Oka T, Hamaguchi T, Sameshima Y, Goto M, Furukawa K. Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiology. 2004;150: 1973–1982. doi: 10.1099/mic.0.27005-0 15184583

15. Chen X-L, Shi T, Yang J, Shi W, Gao X, Chen D, et al. N-Glycosylation of Effector Proteins by an α-1,3-Mannosyltransferase Is Required for the Rice Blast Fungus to Evade Host Innate Immunity. Plant Cell. 2014;26: 1360–1376. doi: 10.1105/tpc.114.123588 24642938

16. Fernandez-Alvarez A, Marin-Menguiano M, Lanver D, Jimenez-Martin A, Elias-Villalobos A, Perez-Pulido AJ, et al. Identification of O-mannosylated virulence factors in Ustilago maydis. PLoS Pathog. 2012;8: e1002563. doi: 10.1371/journal.ppat.1002563 22416226

17. Kamper J, Reichmann M, Romeis T, Bolker M, Kahmann R. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell. 1995;81: 73–83. doi: 10.1016/0092-8674(95)90372-0 7720075

18. Mendoza-Mendoza A, Berndt P, Djamei A, Weise C, Linne U, Marahiel M, et al. Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Mol Microbiol. 2009;71: 895–911. doi: 10.1111/j.1365-2958.2008.06567.x 19170880

19. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. 2006;444: 97–101. doi: 10.1038/nature05248 17080091

20. Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, et al. Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev. John Wiley & Sons, Ltd (10.1111); 2012;36: 59–77. doi: 10.1111/j.1574-6976.2011.00296.x 21729109

21. Matei A, Doehlemann G. Cell biology of corn smut disease—Ustilago maydis as a model for biotrophic interactions. Curr Opin Microbiol. Elsevier Ltd; 2016;34: 60–66. doi: 10.1016/j.mib.2016.07.020 27504540

22. Lanver D, Tollot M, Schweizer G, Lo Presti L, Reissmann S, Ma L-S, et al. Ustilago maydis effectors and their impact on virulence. Nat Rev Microbiol. 2017;15: 409–421. doi: 10.1038/nrmicro.2017.33 28479603

23. Redkar A, Matei A, Doehlemann G. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis. Front Plant Sci. Frontiers Media SA; 2017;8: 899. doi: 10.3389/fpls.2017.00899 28611813

24. Flor-Parra I, Vranes M, Kamper J, Perez-Martin J. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell. 2006;18: 2369–2387. doi: 10.1105/tpc.106.042754 16905655

25. Bottin A, Kamper J, Kahmann R. Isolation of a carbon source-regulated gene from Ustilago maydis. Mol Gen Genet. 1996;253: 342–52. doi: 10.1007/pl00008601 9003321

26. Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, et al. Metabolic priming by a secreted fungal effector. Nature. 2011;478: 395–398. doi: 10.1038/nature10454 21976020

27. Soberanes-Gutierrez C V, Juarez-Montiel M, Olguin-Rodriguez O, Hernandez-Rodriguez C, Ruiz-Herrera J, Villa-Tanaca L. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis. Mol Plant Pathol. 2015;16: 837–46. doi: 10.1111/mpp.12240 25597948

28. Lanver D, Berndt P, Tollot M, Naik V, Vranes M, Warmann T, et al. Plant Surface Cues Prime Ustilago maydis for Biotrophic Development. PLoS Pathog. 2014;10: e1004272. doi: 10.1371/journal.ppat.1004272 25033195

29. Bolker M, Bohnert HU, Braun KH, Gorl J, Kahmann R. Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol Gen Genet. Germany; 1995;248: 547–552. doi: 10.1007/bf02423450 7476854

30. Banuett F, Herskowitz I. Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci U S A. 1989;86: 5878–5882. doi: 10.1073/pnas.86.15.5878 16594058

31. Ali Khan H, Mutus B. Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Front Chem. Frontiers Media SA; 2014;2: 70. doi: 10.3389/fchem.2014.00070 25207270

32. Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta—Proteins Proteomics. 2004;1699: 35–44. doi: 10.1016/S1570-9639(04)00063-9

33. Breitenbach M, Weber M, Rinnerthaler M, Karl T, Breitenbach-Koller L. Oxidative stress in fungi: its function in signal transduction, interaction with plant hosts, and lignocellulose degradation. Biomolecules. 2015;5: 318–342. doi: 10.3390/biom5020318 25854186

34. Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, et al. The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci. 2007;104: 11676–11681. doi: 10.1073/pnas.0704862104 17606910

35. Lanver D, Muller AN, Happel P, Schweizer G, Haas FB, Franitza M, et al. The biotrophic development of Ustilago maydis studied by RNAseq analysis. Plant Cell. 2018;30: tpc.00764.2017. doi: 10.1105/tpc.17.00764 29371439

36. Brefort T, Tanaka S, Neidig N, Doehlemann G, Vincon V, Kahmann R. Characterization of the largest effector gene cluster of Ustilago maydis. PLoS Pathog. 2014;10: e1003866. doi: 10.1371/journal.ppat.1003866 24992561

37. Mares RE, Ramos MA. An amebic protein disulfide isomerase (PDI) complements the yeast PDI1 mutation but is unable to support cell viability under ER or thermal stress. FEBS Open Bio. 2018;8: 49–55. doi: 10.1002/2211-5463.12350 29321956

38. Harries E, Gandia M, Carmona L, Marcos JF. The Penicillium digitatum protein O-mannosyltransferase Pmt2 is required for cell wall integrity, conidiogenesis, virulence and sensitivity to the antifungal peptide PAF26. Mol Plant Pathol. 2015;16: 748–61. doi: 10.1111/mpp.12232 25640475

39. Guo M, Tan L, Nie X, Zhu X, Pan Y, Gao Z. The Pmt2p-Mediated Protein O-Mannosylation Is Required for Morphogenesis, Adhesive Properties, Cell Wall Integrity and Full Virulence of Magnaporthe oryzae. Front Microbiol. 2016;7: 630. doi: 10.3389/fmicb.2016.00630 27199956

40. Gonzalez M, Brito N, Frias M, Gonzalez C. Botrytis cinerea Protein O-Mannosyltransferases Play Critical Roles in Morphogenesis, Growth, and Virulence. Yu J-H, editor. PLoS One. 2013;8: e65924. doi: 10.1371/journal.pone.0065924 23762450

41. Wagener J, Weindl G, de Groot PWJ, de Boer AD, Kaesler S, Thavaraj S, et al. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. Lenz LL, editor. PLoS One. 2012;7: e50518. doi: 10.1371/journal.pone.0050518 23226301

42. Willger SD, Ernst JF, Alspaugh JA, Lengeler KB. Characterization of the PMT gene family in Cryptococcus neoformans. Lin X, editor. PLoS One. 2009;4: e6321. doi: 10.1371/journal.pone.0006321 19633715

43. Leach MD, Brown AJP. Posttranslational Modifications of Proteins in the Pathobiology of Medically Relevant Fungi. Eukaryot Cell. 2012;11: 98–108. doi: 10.1128/EC.05238-11 22158711

44. Uhse S, Djamei A. Effectors of plant-colonizing fungi and beyond. Zipfel C, editor. PLOS Pathog. 2018;14: e1006992. doi: 10.1371/journal.ppat.1006992 29879221

45. Xie X, Lipke PN. On the evolution of fungal and yeast cell walls. Yeast. 2010;27: 479–488. doi: 10.1002/yea.1787 20641026

46. Kruszewska JS, Perlińska-Lenart U, Górka-Nieć W, Orłowski J, Zembek P, Palamarczyk G. Alterations in protein secretion caused by metabolic engineering of glycosylation pathways in fungi. Acta Biochim Pol. 2008;55: 447–56. 18797519

47. Nielsen H. Predicting Secretory Proteins with SignalP. Methods in molecular biology (Clifton, NJ). 2017. pp. 59–73. doi: 10.1007/978-1-4939-7015-5_6 28451972

48. Sperschneider J, Dodds PN, Singh KB, Taylor JM. ApoplastP: prediction of effectors and plant proteins in the apoplast using machine learning. New Phytol. 2018;217: 1764–1778. doi: 10.1111/nph.14946 29243824

49. Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, et al. Effector P: predicting fungal effector proteins from secretomes using machine learning. New Phytol. 2016;210: 743–761. doi: 10.1111/nph.13794 26680733

50. Burggraaf A-M, Punt PJ, Ram AFJ. The unconventional secretion of PepN is independent of a functional autophagy machinery in the filamentous fungus Aspergillus niger. FEMS Microbiol Lett. 2016;363. doi: 10.1093/femsle/fnw152 27284019

51. Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, Konig J, et al. The RNA-Binding Protein Rrm4 is Essential for Efficient Secretion of Endochitinase Cts1. Mol Cell Proteomics. 2011;10: M111.011213. doi: 10.1074/mcp.M111.011213 21808052

52. Stock J, Sarkari P, Kreibich S, Brefort T, Feldbrugge M, Schipper K. Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J Biotechnol. 2012;161: 80–91. doi: 10.1016/j.jbiotec.2012.03.004 22446315

53. Aschenbroich J, Hussnaetter KP, Stoffels P, Langner T, Zander S, Sandrock B, et al. The germinal centre kinase Don3 is crucial for unconventional secretion of chitinase Cts1 in Ustilago maydis. Biochim Biophys Acta—Proteins Proteomics. 2018; doi: 10.1016/j.bbapap.2018.10.007 30316861

54. Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics. 2007;7: 3171–83. doi: 10.1002/pmic.200700184 17676664

55. Lanver D, Mendoza-Mendoza A, Brachmann A, Kahmann R. Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. Plant Cell. 2010;22: 2085–2101. doi: 10.1105/tpc.109.073734 20587773

56. Tollot M, Assmann D, Becker C, Altmuller J, Dutheil JY, Wegner C-E, et al. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. Wang Y, editor. PLoS Pathog. 2016;12: e1005697. doi: 10.1371/journal.ppat.1005697 27332891

57. Wahl R, Zahiri A, Kamper J. The Ustilago maydis b mating type locus controls hyphal proliferation and expression of secreted virulence factors in planta. Mol Microbiol. 2010;75: 208–220. doi: 10.1111/j.1365-2958.2009.06984.x 19943901

58. Skibbe DS, Doehlemann G, Fernandes J, Walbot V. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science (80-). 2010;328: 89–92. doi: 10.1126/science.1185775 20360107

59. Zhou X, Liu W, Wang C, Xu Q, Wang Y, Ding S, et al. A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae. Mol Microbiol. 2011;80: 33–53. doi: 10.1111/j.1365-2958.2011.07556.x 21276092

60. Pan Y, Pan R, Tan L, Zhang Z, Guo M. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae. Curr Genet. 2018; doi: 10.1007/s00294-018-0864-2 29946987

61. Li M, Liu X, Liu Z, Sun Y, Liu M, Wang X, et al. Glycoside Hydrolase MoGls2 Controls Asexual/Sexual Development, Cell Wall Integrity and Infectious Growth in the Rice Blast Fungus. Wang Z, editor. PLoS One. 2016;11: e0162243. doi: 10.1371/journal.pone.0162243 27607237

62. Fernandez-Alvarez A, Elias-Villalobos A, Ibeas JI. The requirement for protein O-mannosylation for Ustilago maydis virulence seems to be linked to intrinsic aspects of the infection process rather than an altered plant response. Plant Signal Behav. 2010;5: 412–414. doi: 10.4161/psb.5.4.10805 20061799

63. Win J, Chaparro-Garcia A, Belhaj K, Saunders DGO, Yoshida K, Dong S, et al. Effector Biology of Plant-Associated Organisms: Concepts and Perspectives. Cold Spring Harb Symp Quant Biol. 2012;77: 235–247. doi: 10.1101/sqb.2012.77.015933 23223409

64. Seitner D, Uhse S, Gallei M, Djamei A. The core effector Cce1 is required for early infection of maize by Ustilago maydis. Mol Plant Pathol. 2018;19: 2277–2287. doi: 10.1111/mpp.12698 29745456

65. Trombetta ES, Parodi AJ. Quality Control and Protein Folding in the Secretory Pathway. Annu Rev Cell Dev Biol. 2003;19: 649–676. doi: 10.1146/annurev.cellbio.19.110701.153949 14570585

66. Moremen KW, Molinari M. N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol. 2006;16: 592–9. doi: 10.1016/j.sbi.2006.08.005 16938451

67. Marschall R, Tudzynski P. The Protein Disulfide Isomerase of Botrytis cinerea: An ER Protein Involved in Protein Folding and Redox Homeostasis Influences NADPH Oxidase Signaling Processes. Front Microbiol. Frontiers Media SA; 2017;8: 960. doi: 10.3389/fmicb.2017.00960 28611757

68. Doehlemann G, van der Linde K, Assmann D, Schwammbach D, Hof A, Mohanty A, et al. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog. 2009;5: e1000290. doi: 10.1371/journal.ppat.1000290 19197359

69. Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog. 2012;8: e1002684. doi: 10.1371/journal.ppat.1002684 22589719

70. Mueller AN, Ziemann S, Treitschke S, Assmann D, Doehlemann G. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog. 2013;9: e1003177. doi: 10.1371/journal.ppat.1003177 23459172

71. Redkar A, Hoser R, Schilling L, Zechmann B, Krzymowska M, Walbot V, et al. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors. Plant Cell. 2015;27: 1332–1351. doi: 10.1105/tpc.114.131086 25888589

72. Sambrook J, Frisch E, Maniatis T. Molecular cloning: a laboratory manual, 2nd ed. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

73. Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bolker M, Kahmann R. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell. 1992;68: 647–657. doi: 10.1016/0092-8674(92)90141-x 1739973

74. Schulz B, Banuett F, Dahl M, Schlesinger R, Schafer W, Martin T, et al. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell. 1990;60: 295–306. doi: 10.1016/0092-8674(90)90744-y 1967554

75. Brachmann A, Konig J, Julius C, Feldbrugge M. A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics. 2004;272: 216–226. doi: 10.1007/s00438-004-1047-z 15316769

76. Fuchs U, Hause G, Schuchardt I, Steinberg G. Endocytosis is essential for pathogenic development in the corn smut fungus Ustilago maydis. Plant Cell. 2006;18: 2066–81. doi: 10.1105/tpc.105.039388 16798890

77. Wedlich-Soldner R, Bolker M, Kahmann R, Steinberg G. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis. Embo J. 2000;19: 1974–1986. doi: 10.1093/emboj/19.9.1974 10790364

78. Pitarch A, Sanchez M, Nombela C, Gil C. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics. 2002;1: 967–982. doi: 10.1074/mcp.m200062-mcp200 12543933

79. Theisen U, Straube A, Steinberg G. Dynamic rearrangement of nucleoporins during fungal “open” mitosis. Mol Biol Cell. 2008;19: 1230–40. doi: 10.1091/mbc.E07-02-0130 18172026

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 11

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Farmaceutická péče o pacienta s inhalační terapií
nový kurz
Autoři: Mgr. Ondřej Šimandl

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se