Electrostatic interactions at the five-fold axis alter heparin-binding phenotype and drive EV-A71 virulence in mice


Autoři: Han Kang Tee aff001;  Chee Wah Tan aff001;  Thinesshwary Yogarajah aff001;  Michelle Hui Pheng Lee aff001;  Hann Juang Chai aff002;  Nur Aziah Hanapi aff003;  Siti R. Yusof aff003;  Kien Chai Ong aff004;  Vannajan Sanghiran Lee aff005;  I-Ching Sam aff001;  Yoke Fun Chan aff001
Působiště autorů: Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia aff001;  Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia aff002;  Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia aff003;  Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia aff004;  Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia aff005
Vyšlo v časopise: Electrostatic interactions at the five-fold axis alter heparin-binding phenotype and drive EV-A71 virulence in mice. PLoS Pathog 15(11): e32767. doi:10.1371/journal.ppat.1007863
Kategorie: Research Article
doi: 10.1371/journal.ppat.1007863

Souhrn

Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased brain virus antigens in mice, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71.

Klíčová slova:

Electrostatics – Heparin – Mouse models – Skeletal muscles – Viral packaging – Viral replication – Viremia – Neurovirulence


Zdroje

1. NikNadia N, Sam IC, Rampal S, WanNorAmalina W, NurAtifah G, Verasahib K, et al. Cyclical patterns of hand, foot and mouth disease caused by Enterovirus A71 in Malaysia. PLoS Negl Trop Dis. 2016;10(3):e0004562. Epub 2016/03/25. doi: 10.1371/journal.pntd.0004562 27010319.

2. Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis. 1974;129(3):304–9. Epub 1974/03/01. doi: 10.1093/infdis/129.3.304 4361245.

3. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and management of enterovirus 71. The Lancet Neurology. 2010;9(11):1097–105. Epub 2010/10/23. doi: 10.1016/S1474-4422(10)70209-X 20965438.

4. McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS microbiology reviews. 2002;26(1):91–107. Epub 2002/05/15. doi: 10.1111/j.1574-6976.2002.tb00601.x 12007645.

5. Brown BA, Pallansch MA. Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res. 1995;39(2–3):195–205. Epub 1995/12/01. doi: 10.1016/0168-1702(95)00087-9 8837884.

6. Shingler KL, Yoder JL, Carnegie MS, Ashley RE, Makhov AM, Conway JF, et al. The enterovirus 71 A-particle forms a gateway to allow genome release: a CryoEM study of picornavirus uncoating. PLoS Pathog. 2013;9(3):e1003240. doi: 10.1371/journal.ppat.1003240 23555253

7. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15(7):798–801. Epub 2009/06/23. doi: 10.1038/nm.1992 19543282.

8. Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med. 2009;15(7):794–7. Epub 2009/06/23. doi: 10.1038/nm.1961 19543284.

9. Tan CW, Poh CL, Sam IC, Chan YF. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol. 2013;87(1):611–20. Epub 2012/10/26. doi: 10.1128/JVI.02226-12 23097443.

10. Yang F, Ren L, Xiong Z, Li J, Xiao Y, Zhao R, et al. Enterovirus 71 outbreak in the People's Republic of China in 2008. J Clin Microbiol. 2009;47(7):2351–2. Epub 2009/05/15. doi: 10.1128/JCM.00563-09 19439545.

11. Su PY, Liu YT, Chang HY, Huang SW, Wang YF, Yu CK, et al. Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells. BMC Microbiol. 2012;12:162. Epub 2012/08/03. doi: 10.1186/1471-2180-12-162 22853823.

12. Yang B, Solakyildirim K, Chang Y, Linhardt RJ. Hyphenated techniques for the analysis of heparin and heparan sulfate. Anal Bioanal Chem. 2011;399(2):541–57. Epub 2010/09/21. doi: 10.1007/s00216-010-4117-6 20853165.

13. Du N, Cong H, Tian H, Zhang H, Zhang W, Song L, et al. Cell surface vimentin is an attachment receptor for enterovirus 71. J Virol. 2014;88(10):5816–33. Epub 2014/03/14. doi: 10.1128/JVI.03826-13 24623428.

14. Su PY, Wang YF, Huang SW, Lo YC, Wang YH, Wu SR, et al. Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol. 2015;89(8):4527–38. Epub 2015/02/13. doi: 10.1128/JVI.03498-14 25673703.

15. Ong KC, Wong KT. Understanding enterovirus 71 neuropathogenesis and its impact on other neurotropic enteroviruses. Brain Pathol. 2015;25(5):614–24. Epub 2015/08/16. doi: 10.1111/bpa.12279 26276025.

16. Zhang Y, Cui W, Liu L, Wang J, Zhao H, Liao Y, et al. Pathogenesis study of enterovirus 71 infection in rhesus monkeys. Lab Invest. 2011;91(9):1337–50. Epub 2011/05/11. doi: 10.1038/labinvest.2011.82 21555996.

17. Chen CS, Yao YC, Lin SC, Lee YP, Wang YF, Wang JR, et al. Retrograde Axonal Transport: a Major Transmission Route of Enterovirus 71 in Mice. J Virol 2007;81(17):8996–9003. doi: 10.1128/JVI.00236-07 17567704

18. Feng M, Guo S, Fan S, Zeng X, Zhang Y, Liao Y, et al. The Preferential Infection of Astrocytes by Enterovirus 71 Plays a Key Role in the Viral Neurogenic Pathogenesis. Front Cell Infect Mi. 2016;6:192-. doi: 10.3389/fcimb.2016.00192 28066727.

19. Li Y, Zhu R, Qian Y, Deng J, Sun Y, Liu L, et al. Comparing Enterovirus 71 with Coxsackievirus A16 by analyzing nucleotide sequences and antigenicity of recombinant proteins of VP1s and VP4s. BMC Microbiol. 2011;11:246. Epub 2011/11/05. doi: 10.1186/1471-2180-11-246 22050722.

20. Chang SC, Li WC, Chen GW, Tsao KC, Huang CG, Huang YC, et al. Genetic characterization of enterovirus 71 isolated from patients with severe disease by comparative analysis of complete genomes. J Med Virol. 2012;84(6):931–9. Epub 2012/04/14. doi: 10.1002/jmv.23287 22499017.

21. Zhang B, Wu X, Huang K, Li L, Zheng L, Wan C, et al. The variations of VP1 protein might be associated with nervous system symptoms caused by enterovirus 71 infection. BMC Infect Dis. 2014;14:243. Epub 2014/06/03. doi: 10.1186/1471-2334-14-243 24886383.

22. Liu Y, Fu C, Wu S, Chen X, Shi Y, Zhou B, et al. A novel finding for enterovirus virulence from the capsid protein VP1 of EV71 circulating in mainland China. Virus Genes. 2014;48(2):260–72. Epub 2014/01/21. doi: 10.1007/s11262-014-1035-2 24442718.

23. Huang YP, Lin TL, Lin TH, Wu HS. Antigenic and genetic diversity of human enterovirus 71 from 2009 to 2012, Taiwan. PLoS One. 2013;8(11):e80942. Epub 2013/12/19. doi: 10.1371/journal.pone.0080942 24348916.

24. Chua BH, Phuektes P, Sanders SA, Nicholls PK, McMinn PC. The molecular basis of mouse adaptation by human enterovirus 71. J Gen Virol. 2008;89(Pt 7):1622–32. Epub 2008/06/19. doi: 10.1099/vir.0.83676-0 18559932.

25. Huang SW, Wang YF, Yu CK, Su IJ, Wang JR. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology. 2012;422(1):132–43. Epub 2011/11/15. doi: 10.1016/j.virol.2011.10.015 22078110.

26. Zaini Z, McMinn P. A single mutation in capsid protein VP1 (Q145E) of a genogroup C4 strain of human enterovirus 71 generates a mouse-virulent phenotype. J Gen Virol. 2012;93(Pt 9):1935–40. Epub 2012/06/01. doi: 10.1099/vir.0.043893-0 22647370.

27. Zhu J, Chen N, Zhou S, Zheng K, Sun L, Zhang Y, et al. Severity of enterovirus A71 infection in a human SCARB2 knock-in mouse model is dependent on infectious strain and route. Emerg Microbes Infect. 2018;7(1):205. Epub 2018/12/07. doi: 10.1038/s41426-018-0201-3 30518755.

28. Kataoka C, Suzuki T, Kotani O, Iwata-Yoshikawa N, Nagata N, Ami Y, et al. The role of VP1 amino acid residue 145 of enterovirus 71 in viral fitness and pathogenesis in a cynomolgus monkey model. PLoS Pathog. 2015;11(7):e1005033. Epub 2015/07/17. doi: 10.1371/journal.ppat.1005033 26181772.

29. Nishimura Y, Lee H, Hafenstein S, Kataoka C, Wakita T, Bergelson JM, et al. Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction. PLoS Pathog. 2013;9(7):e1003511. Epub 2013/08/13. doi: 10.1371/journal.ppat.1003511 23935488.

30. Zaini Z, Phuektes P, McMinn P. A reverse genetic study of the adaptation of human enterovirus 71 to growth in Chinese hamster ovary cell cultures. Virus Res. 2012;165(2):151–6. Epub 2012/03/13. doi: 10.1016/j.virusres.2012.02.009 22406130.

31. Reddi HV, Lipton HL. Heparan sulfate mediates infection of high-neurovirulence Theiler's viruses. J Virol. 2002;76(16):8400–7. Epub 2002/07/23. doi: 10.1128/JVI.76.16.8400-8407.2002 12134043.

32. Lee E, Lobigs M. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese Encephalitis Virus and Murray Valley Encephalitis Virus. J Virol 2002;76(10):4901–11. doi: 10.1128/JVI.76.10.4901-4911.2002 11967307

33. Lee E, Hall RA, Lobigs M. Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. J Virol. 2004;78(15):8271–80. Epub 2004/07/16. doi: 10.1128/JVI.78.15.8271-8280.2004 15254199.

34. Lee E, Lobigs M. E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. J Virol. 2008;82(12):6024–33. Epub 2008/04/11. doi: 10.1128/JVI.02509-07 18400851.

35. Mandl CW, Kroschewski H, Allison SL, Kofler R, Holzmann H, Meixner T, et al. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol. 2001;75(12):5627–37. Epub 2001/05/18. doi: 10.1128/JVI.75.12.5627-5637.2001 11356970.

36. Byrnes AP, Griffin DE. Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J Virol. 2000;74(2):644–51. Epub 2000/01/07. doi: 10.1128/jvi.74.2.644-651.2000 10623725.

37. Gardner CL, Ebel GD, Ryman KD, Klimstra WB. Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc Natl Acad Sci U S A. 2011;108(38):16026–31. Epub 2011/09/08. doi: 10.1073/pnas.1110617108 21896745.

38. Gardner CL, Choi-Nurvitadhi J, Sun C, Bayer A, Hritz J, Ryman KD, et al. Natural variation in the heparan sulfate binding domain of the eastern equine encephalitis virus E2 glycoprotein alters interactions with cell surfaces and virulence in mice. J Virol. 2013;87(15):8582–90. Epub 2013/05/31. doi: 10.1128/JVI.00937-13 23720725.

39. Tan CW, Sam IC, Lee VS, Wong HV, Chan YF. VP1 residues around the five-fold axis of enterovirus A71 mediate heparan sulfate interaction. Virology. 2017;501:79–87. Epub 2016/11/23. doi: 10.1016/j.virol.2016.11.009 27875780.

40. Xu Y, Ma S, Zhu L, Huang Z, Chen L, Xu Y, et al. Clinically isolated enterovirus A71 subgenogroup C4 strain with lethal pathogenicity in 14-day-old mice and the application as an EV-A71 mouse infection model. Antiviral Res. 2017;137:67–75. Epub 2016/11/20. doi: 10.1016/j.antiviral.2016.11.008 27864074.

41. Fujii K, Sudaka Y, Takashino A, Kobayashi K, Kataoka C, Suzuki T, et al. VP1 amino acid residue 145 of enterovirus 71 is a key residue for its receptor attachment and resistance to neutralizing antibody during cynomolgus monkey infection. J Virol. 2018. Epub 2018/06/01. doi: 10.1128/JVI.00682-18 29848582.

42. Meng T, Kwang J. Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice. J Virol. 2014;88(10):5803–15. Epub 2014/03/14. doi: 10.1128/JVI.00289-14 24623423.

43. Sadeghipour S, Bek EJ, McMinn PC. Ribavirin-resistant mutants of human enterovirus 71 express a high replication fidelity phenotype during growth in cell culture. J Virol. 2013;87(3):1759–69. Epub 2012/11/24. doi: 10.1128/JVI.02139-12 23175376.

44. Vignuzzi M, Wendt E, Andino R. Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med. 2008;14(2):154–61. Epub 2008/02/05. doi: 10.1038/nm1726 18246077.

45. Acevedo A, Woodman A, Arnold JJ, Yeh MT, Evans D, Cameron CE, et al. Genetic recombination of poliovirus facilitates subversion of host barriers to infection. J bioRxiv 2018:273060. doi: 10.1101/273060

46. Zaini Z, Phuektes P, McMinn P. Mouse adaptation of a sub-genogroup B5 strain of human enterovirus 71 is associated with a novel lysine to glutamic acid substitution at position 244 in protein VP1. Virus Res. 2012;167(1):86–96. Epub 2012/05/12. doi: 10.1016/j.virusres.2012.04.009 22575826.

47. Caine EA, Moncla LH, Ronderos MD, Friedrich TC, Osorio JE. A single mutation in the VP1 of enterovirus 71 Is responsible for increased virulence and neurotropism in adult interferon-deficient mice. J Virol 2016;90(19):8592–604. doi: 10.1128/JVI.01370-16 27440896

48. Pfeiffer JK, Kirkegaard K. Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog. 2005;1(2):e11. doi: 10.1371/journal.ppat.0010011 16220146

49. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature. 2006;439(7074):344–8. Epub 2005/12/04. doi: 10.1038/nature04388 16327776.

50. Zhu W, Li J, Liang G. How does cellular heparan sulfate function in viral pathogenicity? Biomed Environ Sci. 2011;24(1):81–7. Epub 2011/03/29. 21440844.

51. Liu J, Dong W, Quan X, Ma C, Qin C, Zhang L. Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice. Arch Virol. 2012;157(3):539–43. Epub 2011/12/22. doi: 10.1007/s00705-011-1198-2 22187102.

52. Fujii K, Nagata N, Sato Y, Ong KC, Wong KT, Yamayoshi S, et al. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc Natl Acad Sci U S A. 2013;110(36):14753–8. Epub 2013/08/21. doi: 10.1073/pnas.1217563110 23959904.

53. Lin YW, Yu SL, Shao HY, Lin HY, Liu CC, Hsiao KN, et al. Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS One. 2013;8(2):e57591. Epub 2013/03/02. doi: 10.1371/journal.pone.0057591 23451246.

54. Yamayoshi S, Koike S. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J Virol 2011;85(10):4937–46. doi: 10.1128/JVI.02358-10 21389126

55. Miyamura K, Nishimura Y, Abo M, Wakita T, Shimizu H. Adaptive mutations in the genomes of enterovirus 71 strains following infection of mouse cells expressing human P-selectin glycoprotein ligand-1. J Gen Virol. 2011;92(Pt 2):287–91. doi: 10.1099/vir.0.022418-0 20943886.

56. Victorio CB, Xu Y, Ng Q, Meng T, Chow VT, Chua KB. Cooperative effect of the VP1 amino acids 98E, 145A and 169F in the productive infection of mouse cell lines by enterovirus 71 (BS strain). Emerg Microbes Infect. 2016;5:e60. Epub 2016/06/23. doi: 10.1038/emi.2016.56 27329847.

57. Chang CK, Wu SR, Chen YC, Lee KJ, Chung NH, Lu YJ, et al. Mutations in VP1 and 5'-UTR affect enterovirus 71 virulence. Sci Rep. 2018;8(1):6688. Epub 2018/04/29. doi: 10.1038/s41598-018-25091-7 29703921.

58. Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, Lei HY. A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol. 2004;85(Pt 1):69–77. Epub 2004/01/14. doi: 10.1099/vir.0.19423-0 14718621.

59. Bernard KA, Klimstra WB, Johnston RE. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology. 2000;276(1):93–103. Epub 2000/10/07. doi: 10.1006/viro.2000.0546 11021998.

60. Kobayashi K, Sudaka Y, Takashino A, Imura A, Fujii K, Koike S. Amino acid variation at VP1-145 of enterovirus 71 determines attachment receptor usage and neurovirulence in human scavenger receptor B2 transgenic mice. J Virol. 2018. Epub 2018/06/01. doi: 10.1128/JVI.00681-18 29848584.

61. Wang X, Li S-H, Zhu L, Nian Q-G, Yuan S, Gao Q, et al. Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nature Communications. 2017;8(1):14. doi: 10.1038/s41467-017-00024-6 28446752

62. Cheng HY, Huang YC, Yen TY, Hsia SH, Hsieh YC, Li CC, et al. The correlation between the presence of viremia and clinical severity in patients with enterovirus 71 infection: a multi-center cohort study. BMC Infect Dis. 2014;14:417. Epub 2014/07/30. doi: 10.1186/1471-2334-14-417 25069383.

63. Feng M, Guo S, Fan S, Zeng X, Zhang Y, Liao Y, et al. The preferential infection of astrocytes by enterovirus 71 plays a key role in the viral neurogenic pathogenesis. Frontiers in cellular and infection microbiology. 2016;6:192-. doi: 10.3389/fcimb.2016.00192 28066727.

64. Tan SH, Wong KT, Ong KC. Enterovirus 71 can directly infect the brainstem via cranial nerves and infection can be ameliorated by passive immunization. J Neuropathol Exp Neurol. 2014;73(11):999–1008. doi: 10.1097/NEN.0000000000000122 25289894

65. Ong KC, Badmanathan M, Devi S, Leong KL, Cardosa MJ, Wong KT. Pathologic characterization of a murine model of human enterovirus 71 encephalomyelitis. J Neuropathol Exp Neurol. 2008;67(6):532–42. Epub 2008/06/04. doi: 10.1097/NEN.0b013e31817713e7 18520772.

66. Racaniello VR. One hundred years of poliovirus pathogenesis. Virology. 2006;344(1):9–16. https://doi.org/10.1016/j.virol.2005.09.015. 16364730

67. Lancaster KZ, Pfeiffer JK. Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLoS Pathog. 2010;6(3):e1000791. doi: 10.1371/journal.ppat.1000791 20221252

68. Chen CS, Yao YC, Lin SC, Lee YP, Wang YF, Wang JR, et al. Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. J Virol. 2007;81(17):8996–9003. Epub 2007/06/15. doi: 10.1128/JVI.00236-07 17567704.

69. Couderc T, Delpeyroux F, Le Blay H, Blondel B. Mouse adaptation determinants of poliovirus type 1 enhance viral uncoating. J Virol. 1996;70(1):305–12. Epub 1996/01/01. 8523541.

70. Rincon V, Rodriguez-Huete A, Lopez-Arguello S, Ibarra-Molero B, Sanchez-Ruiz JM, Harmsen MM, et al. Identification of the structural basis of thermal lability of a virus provides a rationale for improved vaccines. Structure. 2014;22(11):1560–70. Epub 2014/10/14. doi: 10.1016/j.str.2014.08.019 25308865.

71. Yuan S, Li G, Wang Y, Gao Q, Wang Y, Cui R, et al. Identification of positively charged residues in enterovirus 71 capsid protein VP1 essential for production of infectious particles. J Virol. 2016;90(2):741–52. Epub 2015/10/30. doi: 10.1128/JVI.02482-15 26512078.

72. Bordo D, Argos P. Suggestions for "safe" residue substitutions in site-directed mutagenesis. J Mol Biol. 1991;217(4):721–9. Epub 1991/02/20. doi: 10.1016/0022-2836(91)90528-e 2005621.

73. Cohen FE. The Statistics of Sequence Similarity Scores. NCBI; 2006.

74. Stern A, Yeh MT, Zinger T, Smith M, Wright C, Ling G, et al. The evolutionary pathway to virulence of an RNA virus. Cell. 2017;169(1):35–46.e19. Epub 2017/03/25. doi: 10.1016/j.cell.2017.03.013 28340348.

75. Zhang YX, Huang YM, Li QJ, Li XY, Zhou YD, Guo F, et al. A highly conserved amino acid in VP1 regulates maturation of enterovirus 71. PLoS Pathog. 2017;13(9):e1006625. Epub 2017/09/25. doi: 10.1371/journal.ppat.1006625 28938017.

76. Tseligka ED, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, et al. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog. 2018;14(8):e1007190. doi: 10.1371/journal.ppat.1007190 30075025

77. Cordey S, Petty TJ, Schibler M, Martinez Y, Gerlach D, van Belle S, et al. Identification of site-specific adaptations conferring increased neural cell tropism during human enterovirus 71 infection. PLoS Pathog. 2012;8(7):e1002826. Epub 2012/08/23. doi: 10.1371/journal.ppat.1002826 22910880.

78. Huang SW, Huang YH, Tsai HP, Kuo PH, Wang SM, Liu CC, et al. A selective bottleneck shapes the evolutionary mutant spectra of enterovirus A71 during viral dissemination in humans. J Virol. 2017;91(23). Epub 2017/09/22. doi: 10.1128/JVI.01062-17 28931688.

79. Lum LC, Wong KT, Lam SK, Chua KB, Goh AY, Lim WL, et al. Fatal enterovirus 71 encephalomyelitis. J Pediatr. 1998;133(6):795–8. Epub 1998/12/08. doi: 10.1016/s0022-3476(98)70155-6 9842048.

80. Gao LD, Hu SX, Zhang H, Luo KW, Liu YZ, Xu QH, et al. Correlation analysis of EV71 detection and case severity in hand, foot, and mouth disease in the Hunan Province of China. PLoS One. 2014;9(6):e100003. Epub 2014/06/19. doi: 10.1371/journal.pone.0100003 24941257.

81. Sabanathan S, Tan LV, Thwaites L, Wills B, Qui PT, Rogier van Doorn H. Enterovirus 71 related severe hand, foot and mouth disease outbreaks in South-East Asia: current situation and ongoing challenges. J Epidemiol Commun H 2014;68(6):500–2. doi: 10.1136/jech-2014-203836 24652348

82. Xing W, Liao Q, Viboud C, Zhang J, Sun J, Wu JT, et al. Hand, foot, and mouth disease in China, 2008–12: an epidemiological study. Lancet Infect Dis. 2014;14(4):308–18. Epub 2014/02/04. doi: 10.1016/S1473-3099(13)70342-6 24485991.

83. Zhang J, Sun J, Chang Z, Zhang W, Wang Z, Feng Z. Characterization of hand, foot, and mouth disease in China between 2008 and 2009. Biomed Environ Sci. 2011;24(3):214–21. Epub 2011/07/26. 21784305.

84. Yang CH, Liang CT, Jiang ST, Chen KH, Yang CC, Cheng ML, et al. A novel murine model expressing a chimeric mSCARB2/hSCARB2 receptor is highly susceptible to oral infection with clinical isolates of enterovirus 71. J Virol. 2019;93(11):e00183–19. doi: 10.1128/JVI.00183-19 30894476

85. Liou AT, Wu SY, Liao CC, Chang YS, Chang CS, Shih C. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep. 2016;6:31151. Epub 2016/08/09. doi: 10.1038/srep31151 27499235.

86. Tan CW, Tee HK, Lee MH, Sam IC, Chan YF. Enterovirus A71 DNA-launched infectious clone as a robust reverse genetic tool. PLoS One. 2016;11(9):e0162771. Epub 2016/09/13. doi: 10.1371/journal.pone.0162771 27617744.

87. Kammerer U, Kapp M, Gassel AM, Richter T, Tank C, Dietl J, et al. A new rapid immunohistochemical staining technique using the EnVision antibody complex. J Histochem Cytochem. 2001;49(5):623–30. Epub 2001/04/17. doi: 10.1177/002215540104900509 11304800.

88. Momany FA, Rone R. Validation of the general purpose QUANTA 3.2/CHARMm force field. Comput. Chem. 1992;13(7):888–900. doi: 10.1002/jcc.540130714

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 11

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Farmaceutická péče o pacienta s inhalační terapií
nový kurz
Autoři: Mgr. Ondřej Šimandl

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se