Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control
Autoři:
Gianna W. Maurer aff001; Alina Malita aff001; Stanislav Nagy aff001; Takashi Koyama aff001; Thomas M. Werge aff002; Kenneth A. Halberg aff001; Michael J. Texada aff001; Kim Rewitz aff001
Působiště autorů:
Department of Biology, University of Copenhagen, Copenhagen, Denmark
aff001; Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
aff002
Vyšlo v časopise:
Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control. PLoS Genet 16(4): e1008727. doi:10.1371/journal.pgen.1008727
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008727
Souhrn
The human 22q11.2 chromosomal deletion is one of the strongest identified genetic risk factors for schizophrenia. Although the deletion spans a number of known genes, the contribution of each of these to the 22q11.2 deletion syndrome (DS) is not known. To investigate the effect of individual genes within this interval on the pathophysiology associated with the deletion, we analyzed their role in sleep, a behavior affected in virtually all psychiatric disorders, including the 22q11.2 DS. We identified the gene LZTR1 (night owl, nowl) as a regulator of night-time sleep in Drosophila. In humans, LZTR1 has been associated with Ras-dependent neurological diseases also caused by Neurofibromin-1 (Nf1) deficiency. We show that Nf1 loss leads to a night-time sleep phenotype nearly identical to that of nowl loss and that nowl negatively regulates Ras and interacts with Nf1 in sleep regulation. Furthermore, nowl is required for metabolic homeostasis, suggesting that LZTR1 may contribute to the genetic susceptibility to obesity associated with the 22q11.2 DS. Knockdown of nowl or Nf1 in GABA-responsive sleep-promoting neurons elicits the sleep phenotype, and this defect can be rescued by increased GABAA receptor signaling, indicating that Nowl regulates sleep through modulation of GABA signaling. Our results suggest that nowl/LZTR1 may be a conserved regulator of GABA signaling important for normal sleep that contributes to the 22q11.2 DS.
Klíčová slova:
Drosophila melanogaster – Glycogens – Nervous system – Neurons – RNA interference – Sleep – Sleep disorders – Neurofibromatosis type 1
Zdroje
1. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science (New York, NY). 2007;316(5823):445–9. Epub 2007/03/17. doi: 10.1126/science.1138659 17363630; PubMed Central PMCID: PMC2993504.
2. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455(7210):232–6. Epub 2008/08/01. doi: 10.1038/nature07229 18668039; PubMed Central PMCID: PMC2687075.
3. Vo OK, McNeill A, Vogt KS. The psychosocial impact of 22q11 deletion syndrome on patients and families: A systematic review. American journal of medical genetics Part A. 2018;176(10):2215–25. Epub 2018/03/27. doi: 10.1002/ajmg.a.38673 29575505; PubMed Central PMCID: PMC6221171.
4. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148(6):1223–41. doi: 10.1016/j.cell.2012.02.039 22424231; PubMed Central PMCID: PMC3351385.
5. Didriksen M, Fejgin K, Nilsson SR, Birknow MR, Grayton HM, Larsen PH, et al. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome: a study in male mice. J Psychiatry Neurosci. 2017;42(1):48–58. doi: 10.1503/jpn.150381 27391101; PubMed Central PMCID: PMC5373712.
6. Shprintzen RJ. Velo-cardio-facial syndrome: 30 Years of study. Developmental disabilities research reviews. 2008;14(1):3–10. Epub 2008/07/19. doi: 10.1002/ddrr.2 18636631; PubMed Central PMCID: PMC2805186.
7. Szelenberger W, Soldatos C. Sleep disorders in psychiatric practice. World psychiatry: official journal of the World Psychiatric Association (WPA). 2005;4(3):186–90. 16633547.
8. Glickman G. Circadian rhythms and sleep in children with autism. Neurosci Biobehav Rev. 2010;34(5):755–68. doi: 10.1016/j.neubiorev.2009.11.017 19963005.
9. Cohrs S. Sleep disturbances in patients with schizophrenia: impact and effect of antipsychotics. CNS drugs. 2008;22(11):939–62. doi: 10.2165/00023210-200822110-00004 18840034.
10. Bassett AS, Chow EW, AbdelMalik P, Gheorghiu M, Husted J, Weksberg R. The schizophrenia phenotype in 22q11 deletion syndrome. The American journal of psychiatry. 2003;160(9):1580–6. Epub 2003/08/29. doi: 10.1176/appi.ajp.160.9.1580 12944331; PubMed Central PMCID: PMC3276594.
11. Moulding HA, Bartsch U, Hall J, Jones MW, Linden DE, Owen MJ, et al. Sleep problems and associations with psychopathology and cognition in young people with 22q11.2 deletion syndrome (22q11.2DS). Psychol Med. 2019:1–12. Epub 2019/05/31. doi: 10.1017/S0033291719001119 31144615.
12. Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet (London, England). 2003;362(9393):1366–73. Epub 2003/10/31. doi: 10.1016/s0140-6736(03)14632-6 14585638.
13. Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, et al. Rest in Drosophila is a sleep-like state. Neuron. 2000;25(1):129–38. doi: 10.1016/s0896-6273(00)80877-6 10707978.
14. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. Correlates of sleep and waking in Drosophila melanogaster. Science (New York, NY). 2000;287(5459):1834–7. Epub 2000/03/10. doi: 10.1126/science.287.5459.1834 10710313.
15. Grima B, Dognon A, Lamouroux A, Chelot E, Rouyer F. CULLIN-3 controls TIMELESS oscillations in the Drosophila circadian clock. PLoS biology. 2012;10(8):e1001367. Epub 2012/08/11. doi: 10.1371/journal.pbio.1001367 22879814; PubMed Central PMCID: PMC3413713.
16. Stavropoulos N, Young MW. insomniac and Cullin-3 regulate sleep and wakefulness in Drosophila. Neuron. 2011;72(6):964–76. Epub 2011/12/27. doi: 10.1016/j.neuron.2011.12.003 22196332; PubMed Central PMCID: PMC3244879.
17. Nagy S, Maurer GW, Hentze JL, Rose M, Werge TM, Rewitz K. AMPK signaling linked to the schizophrenia-associated 1q21.1 deletion is required for neuronal and sleep maintenance. PLoS Genet. 2018;14(12):e1007623. doi: 10.1371/journal.pgen.1007623 30566533; PubMed Central PMCID: PMC6317821.
18. Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123(1):124–33. Epub 2009/01/02. doi: 10.1542/peds.2007-3204 19117870.
19. Smith MJ, Isidor B, Beetz C, Williams SG, Bhaskar SS, Richer W, et al. Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis. Neurology. 2015;84(2):141–7. doi: 10.1212/WNL.0000000000001129 25480913.
20. Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990;63(4):851–9. Epub 1990/11/16. doi: 10.1016/0092-8674(90)90151-4 2121371.
21. Hannan F, Ho I, Tong JJ, Zhu Y, Nurnberg P, Zhong Y. Effect of neurofibromatosis type I mutations on a novel pathway for adenylyl cyclase activation requiring neurofibromin and Ras. Hum Mol Genet. 2006;15(7):1087–98. Epub 2006/03/04. doi: 10.1093/hmg/ddl023 16513807; PubMed Central PMCID: PMC1866217.
22. Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC bioinformatics. 2011;12:357. Epub 2011/09/02. doi: 10.1186/1471-2105-12-357 21880147; PubMed Central PMCID: PMC3179972.
23. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007;448(7150):151–6. Epub 2007/07/13. nature05954 [pii] doi: 10.1038/nature05954 17625558.
24. Vissers JH, Manning SA, Kulkarni A, Harvey KF. A Drosophila RNAi library modulates Hippo pathway-dependent tissue growth. Nat Commun. 2016;7:10368. doi: 10.1038/ncomms10368 26758424; PubMed Central PMCID: PMC4735554.
25. Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics. 2004;167(2):761–81. Epub 2004/07/09. doi: 10.1534/genetics.104.026427 15238527; PubMed Central PMCID: PMC1470905.
26. Appel M, Scholz CJ, Muller T, Dittrich M, Konig C, Bockstaller M, et al. Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster. PLoS One. 2015;10(5):e0126986. Epub 2015/05/21. doi: 10.1371/journal.pone.0126986 25992709; PubMed Central PMCID: PMC4436303.
27. Anderson KN, Bradley AJ. Sleep disturbance in mental health problems and neurodegenerative disease. Nat Sci Sleep. 2013;5:61–75. Epub 2013/06/14. doi: 10.2147/NSS.S34842 23761983; PubMed Central PMCID: PMC3674021.
28. Steklov M, Pandolfi S, Baietti MF, Batiuk A, Carai P, Najm P, et al. Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science (New York, NY). 2018;362(6419):1177–82. Epub 2018/11/18. doi: 10.1126/science.aap7607 30442762.
29. Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362(6419):1171–7. Epub 2018/11/18. doi: 10.1126/science.aap8210 30442766.
30. Anderica-Romero AC, Gonzalez-Herrera IG, Santamaria A, Pedraza-Chaverri J. Cullin 3 as a novel target in diverse pathologies. Redox biology. 2013;1:366–72. Epub 2013/09/12. doi: 10.1016/j.redox.2013.07.003 24024173; PubMed Central PMCID: PMC3757711.
31. Pfeiffenberger C, Allada R. Cul3 and the BTB adaptor insomniac are key regulators of sleep homeostasis and a dopamine arousal pathway in Drosophila. PLoS Genet. 2012;8(10):e1003003. doi: 10.1371/journal.pgen.1003003 23055946; PubMed Central PMCID: PMC3464197.
32. Potdar S, Sheeba V. Lessons from sleeping flies: insights from Drosophila melanogaster on the neuronal circuitry and importance of sleep. Journal of neurogenetics. 2013;27(1–2):23–42. doi: 10.3109/01677063.2013.791692 23701413.
33. Osterwalder T, Yoon KS, White BH, Keshishian H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci U S A. 2001;98(22):12596–601. doi: 10.1073/pnas.221303298 11675495; PubMed Central PMCID: PMC60099.
34. Penev PD. Update on energy homeostasis and insufficient sleep. J Clin Endocrinol Metab. 2012;97(6):1792–801. Epub 2012/03/24. doi: 10.1210/jc.2012-1067 22442266; PubMed Central PMCID: PMC3387421.
35. Benington JH, Heller HC. Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol. 1995;45(4):347–60. doi: 10.1016/0301-0082(94)00057-o 7624482.
36. Petit JM, Burlet-Godinot S, Magistretti PJ, Allaman I. Glycogen metabolism and the homeostatic regulation of sleep. Metab Brain Dis. 2015;30(1):263–79. doi: 10.1007/s11011-014-9629-x 25399336; PubMed Central PMCID: PMC4544655.
37. Zimmerman JE, Mackiewicz M, Galante RJ, Zhang L, Cater J, Zoh C, et al. Glycogen in the brain of Drosophila melanogaster: diurnal rhythm and the effect of rest deprivation. J Neurochem. 2004;88(1):32–40. doi: 10.1046/j.1471-4159.2003.02126.x 14675147.
38. Voll SL, Boot E, Butcher NJ, Cooper S, Heung T, Chow EW, et al. Obesity in adults with 22q11.2 deletion syndrome. Genet Med. 2017;19(2):204–8. Epub 2016/08/19. doi: 10.1038/gim.2016.98 27537705; PubMed Central PMCID: PMC5292049.
39. Knutson KL, Van Cauter E. Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci. 2008;1129:287–304. Epub 2008/07/02. doi: 10.1196/annals.1417.033 18591489; PubMed Central PMCID: PMC4394987.
40. Gottesmann C. GABA mechanisms and sleep. Neuroscience. 2002;111(2):231–9. Epub 2002/05/02. doi: 10.1016/s0306-4522(02)00034-9 11983310.
41. Agosto J, Choi JC, Parisky KM, Stilwell G, Rosbash M, Griffith LC. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci. 2008;11(3):354–9. Epub 2008/01/29. doi: 10.1038/nn2046 18223647; PubMed Central PMCID: PMC2655319.
42. Parisky KM, Agosto J, Pulver SR, Shang Y, Kuklin E, Hodge JJ, et al. PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron. 2008;60(4):672–82. doi: 10.1016/j.neuron.2008.10.042 19038223; PubMed Central PMCID: PMC2734413.
43. Chung BY, Kilman VL, Keath JR, Pitman JL, Allada R. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol. 2009;19(5):386–90. doi: 10.1016/j.cub.2009.01.040 19230663; PubMed Central PMCID: PMC3209479.
44. Gmeiner F, Kolodziejczyk A, Yoshii T, Rieger D, Nassel DR, Helfrich-Forster C. GABA(B) receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster. J Exp Biol. 2013;216(Pt 20):3837–43. doi: 10.1242/jeb.085563 24068350.
45. Sheeba V, Fogle KJ, Kaneko M, Rashid S, Chou YT, Sharma VK, et al. Large ventral lateral neurons modulate arousal and sleep in Drosophila. Current biology: CB. 2008;18(20):1537–45. Epub 2008/09/06. doi: 10.1016/j.cub.2008.08.033 18771923; PubMed Central PMCID: PMC2597195.
46. Liu X, Krause WC, Davis RL. GABAA receptor RDL inhibits Drosophila olfactory associative learning. Neuron. 2007;56(6):1090–102. Epub 2007/12/21. doi: 10.1016/j.neuron.2007.10.036 18093529; PubMed Central PMCID: PMC2709803.
47. Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. Elife. 2015;4. doi: 10.7554/eLife.03868 25564731; PubMed Central PMCID: PMC4305081.
48. Fanous AH, Kendler KS. Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework. Mol Psychiatry. 2005;10(1):6–13. Epub 2004/12/25. doi: 10.1038/sj.mp.4001571 15618952.
49. Regier DA, Narrow WE, Rae DS, Manderscheid RW, Locke BZ, Goodwin FK. The de facto US mental and addictive disorders service system. Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Arch Gen Psychiatry. 1993;50(2):85–94. Epub 1993/02/01. doi: 10.1001/archpsyc.1993.01820140007001 8427558.
50. Bassett AS, Marshall CR, Lionel AC, Chow EW, Scherer SW. Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet. 2008;17(24):4045–53. Epub 2008/09/23. doi: 10.1093/hmg/ddn307 18806272; PubMed Central PMCID: PMC2638574.
51. Clelland CL, Read LL, Baraldi AN, Bart CP, Pappas CA, Panek LJ, et al. Evidence for association of hyperprolinemia with schizophrenia and a measure of clinical outcome. Schizophr Res. 2011;131(1–3):139–45. Epub 2011/06/08. doi: 10.1016/j.schres.2011.05.006 21645996; PubMed Central PMCID: PMC3161723.
52. Gong L, Liu M, Jen J, Yeh ET. GNB1L, a gene deleted in the critical region for DiGeorge syndrome on 22q11, encodes a G-protein beta-subunit-like polypeptide. Biochimica et biophysica acta. 2000;1494(1–2):185–8. Epub 2000/11/10. doi: 10.1016/s0167-4781(00)00189-5 11072084.
53. Chen YZ, Matsushita M, Girirajan S, Lisowski M, Sun E, Sul Y, et al. Evidence for involvement of GNB1L in autism. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(1):61–71. Epub 2011/11/19. doi: 10.1002/ajmg.b.32002 22095694; PubMed Central PMCID: PMC3270696.
54. Ishiguro H, Koga M, Horiuchi Y, Noguchi E, Morikawa M, Suzuki Y, et al. Supportive evidence for reduced expression of GNB1L in schizophrenia. Schizophr Bull. 2010;36(4):756–65. Epub 2008/11/18. doi: 10.1093/schbul/sbn160 19011233; PubMed Central PMCID: PMC2894596.
55. Williams NM, Glaser B, Norton N, Williams H, Pierce T, Moskvina V, et al. Strong evidence that GNB1L is associated with schizophrenia. Hum Mol Genet. 2008;17(4):555–66. Epub 2007/11/16. doi: 10.1093/hmg/ddm330 18003636.
56. Owen MJ, O'Donovan MC, Thapar A, Craddock N. Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry. 2011;198(3):173–5. Epub 2011/03/02. doi: 10.1192/bjp.bp.110.084384 21357874; PubMed Central PMCID: PMC3764497.
57. Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T, Aoki Y. LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ. 2019. Epub 2019/07/25. doi: 10.1038/s41418-019-0395-5 31337872.
58. Williams JA, Su HS, Bernards A, Field J, Sehgal A. A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science. 2001;293(5538):2251–6. doi: 10.1126/science.1063097 11567138.
59. Piotrowski A, Xie J, Liu YF, Poplawski AB, Gomes AR, Madanecki P, et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet. 2014;46(2):182–7. Epub 2013/12/24. doi: 10.1038/ng.2855 24362817; PubMed Central PMCID: PMC4352302.
60. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25(1):1–27. Epub 2001/05/30. doi: 10.1016/S0893-133X(01)00225-1 11377916.
61. de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies. Front Psychiatry. 2017;8:118. Epub 2017/08/30. doi: 10.3389/fpsyt.2017.00118 28848455; PubMed Central PMCID: PMC5554536.
62. Davis RL. Mushroom bodies and Drosophila learning. Neuron. 1993;11(1):1–14. Epub 1993/07/01. doi: 10.1016/0896-6273(93)90266-t 8338661.
63. Joiner WJ, Crocker A, White BH, Sehgal A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature. 2006;441(7094):757–60. Epub 2006/06/09. doi: 10.1038/nature04811 16760980.
64. Pitman JL, McGill JJ, Keegan KP, Allada R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature. 2006;441(7094):753–6. Epub 2006/06/09. doi: 10.1038/nature04739 16760979.
65. Cirelli C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nature reviews Neuroscience. 2009;10(8):549–60. Epub 2009/07/21. doi: 10.1038/nrn2683 19617891; PubMed Central PMCID: PMC2767184.
66. Salkoff L, Wyman R. Genetic modification of potassium channels in Drosophila Shaker mutants. Nature. 1981;293(5829):228–30. Epub 1981/09/17. doi: 10.1038/293228a0 6268986.
67. Espinosa F, Marks G, Heintz N, Joho RH. Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes, brain, and behavior. 2004;3(2):90–100. Epub 2004/03/10. doi: 10.1046/j.1601-183x.2003.00054.x 15005717.
68. Kikuma K, Li X, Perry S, Li Q, Goel P, Chen C, et al. Cul3 and insomniac are required for rapid ubiquitination of postsynaptic targets and retrograde homeostatic signaling. Nature communications. 2019;10(1):2998. Epub 2019/07/07. doi: 10.1038/s41467-019-10992-6 31278365; PubMed Central PMCID: PMC6611771.
69. Roth T. A physiologic basis for the evolution of pharmacotherapy for insomnia. The Journal of clinical psychiatry. 2007;68 Suppl 5:13–8. Epub 2007/08/19. 17539704.
70. Buhr A, Bianchi MT, Baur R, Courtet P, Pignay V, Boulenger JP, et al. Functional characterization of the new human GABA(A) receptor mutation beta3(R192H). Human genetics. 2002;111(2):154–60. Epub 2002/08/22. doi: 10.1007/s00439-002-0766-7 12189488.
71. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 2005;33(4):e36. doi: 10.1093/nar/gni035 15731329; PubMed Central PMCID: PMC549575.
72. Wang S, Zhao Y, Leiby M, Zhu J. A new positive/negative selection scheme for precise BAC recombineering. Mol Biotechnol. 2009;42(1):110–6. doi: 10.1007/s12033-009-9142-3 19160076; PubMed Central PMCID: PMC2669495.
73. Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, Murphy C, et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A. 2008;105(28):9715–20. doi: 10.1073/pnas.0803697105 18621688; PubMed Central PMCID: PMC2447866.
74. Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, et al. Refinement of tools for targeted gene expression in Drosophila. Genetics. 2010;186(2):735–55. doi: 10.1534/genetics.110.119917 20697123; PubMed Central PMCID: PMC2942869.
75. Bischof J, Maeda RK, Hediger M, Karch F, Basler K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A. 2007;104(9):3312–7. doi: 10.1073/pnas.0611511104 17360644; PubMed Central PMCID: PMC1805588.
76. Gilestro GF, Cirelli C. pySolo: a complete suite for sleep analysis in Drosophila. Bioinformatics (Oxford, England). 2009;25(11):1466–7. Epub 2009/04/17. doi: 10.1093/bioinformatics/btp237 19369499; PubMed Central PMCID: PMC2732309.
77. Klarsfeld A, Leloup JC, Rouyer F. Circadian rhythms of locomotor activity in Drosophila. Behav Processes. 2003;64(2):161–75. Epub 2003/10/15. doi: 10.1016/s0376-6357(03)00133-5 14556950.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 4
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Jak může lékárník přispět ke zvýšení bezpečnosti terapie kortikosteroidy a zbavit pacienty obav z jejich nežádoucích účinků?
- Budou nanoléčiva lépe cílit na některé onkologické nemoci?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
Nejčtenější v tomto čísle
- Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum