Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping

Autoři: Rachel E. Langston aff001;  Dominic Palazzola aff001;  Erin Bonnell aff002;  Raymund J. Wellinger aff002;  Ted Weinert aff001
Působiště autorů: Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America aff001;  Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada aff002
Vyšlo v časopise: Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008733
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008733


In budding yeast, Cdc13, Stn1, and Ten1 form the telomere-binding heterotrimer CST complex. Here we investigate the role of Cdc13/CST in maintaining genome stability by using a Chr VII disome system that can generate recombinants, chromosome loss, and enigmatic unstable chromosomes. In cells expressing a temperature sensitive CDC13 allele, cdc13F684S, unstable chromosomes frequently arise from problems in or near a telomere. We found that, when Cdc13 is defective, passage through S phase causes Exo1-dependent ssDNA and unstable chromosomes that are then the source for additional chromosome instability events (e.g. recombinants, chromosome truncations, dicentrics, and/or chromosome loss). We observed that genome instability arises from a defect in Cdc13’s function during DNA replication, not Cdc13’s putative post-replication telomere capping function. The molecular nature of the initial unstable chromosomes formed by a Cdc13-defect involves ssDNA and does not involve homologous recombination nor non-homologous end joining; we speculate the original unstable chromosome may be a one-ended double strand break. This system defines a link between Cdc13’s function during DNA replication and genome stability in the form of unstable chromosomes, that then progress to form other chromosome changes.

Klíčová slova:

Cell cycle and cell division – DNA recombination – DNA replication – Genetic networks – Chromosome structure and function – Protein structure networks – Synthesis phase – Telomeres


1. Wellinger RJ, Zakian VA. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics. 2012;191: 1073–1105. doi: 10.1534/genetics.111.137851 22879408

2. Gilson E, Géli V. How telomeres are replicated. Nat Rev Mol Cell Biol. 2007;8: 825–838. doi: 10.1038/nrm2259 17885666

3. Soudet J, Jolivet P, Teixeira MT. Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae. Molecular Cell. Elsevier; 2014;53: 954–964. doi: 10.1016/j.molcel.2014.02.030 24656131

4. Wu RA, Upton HE, Vogan JM, Collins K. Telomerase Mechanism of Telomere Synthesis. Annu Rev Biochem. 2017;86: 439–460. doi: 10.1146/annurev-biochem-061516-045019 28141967

5. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43: 405–413. doi: 10.1016/0092-8674(85)90170-9 3907856

6. Jain D, Cooper JP. Telomeric strategies: means to an end. Annu Rev Genet. 2010;44: 243–269. doi: 10.1146/annurev-genet-102108-134841 21047259

7. Sundquist WI, Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. Nature Publishing Group; 1989;342: 825–829. doi: 10.1038/342825a0 2601741

8. Paeschke K, Capra JA, Zakian VA. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell. Elsevier; 2011;145: 678–691. doi: 10.1016/j.cell.2011.04.015 21620135

9. Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou M-P, et al. G-quadruplex-induced instability during leading-strand replication. The EMBO Journal. 2011;30: 4033–4046. doi: 10.1038/emboj.2011.316 21873979

10. Ivessa AS, Zhou J-Q, Schulz VP, Monson EK, Zakian VA. Saccharomyces Rrm3p, a 5”to 3” DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes & Development. 2002;16: 1383–1396. doi: 10.1101/gad.982902 12050116

11. Goto GH, Zencir S, Hirano Y, Ogi H, Ivessa A, Sugimoto K. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication. PLoS Genet. 2015;11: e1005283. doi: 10.1371/journal.pgen.1005283 26263073

12. Costantino L, Koshland D. Genome-wide Map of R-Loop-Induced Damage Reveals How a Subset of R-Loops Contributes to Genomic Instability. Molecular Cell. 2018;71: 487–497.e3. doi: 10.1016/j.molcel.2018.06.037 30078723

13. Rippe K, Luke B. TERRA and the state of the telomere. Nat Struct Mol Biol. 2015;22: 853–858. doi: 10.1038/nsmb.3078 26581519

14. Graf M, Bonetti D, Lockhart A, Serhal K, Kellner V, Maicher A, et al. Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell. 2017;170: 72–85.e14. doi: 10.1016/j.cell.2017.06.006 28666126

15. Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015;10: 425–448. doi: 10.1146/annurev-pathol-012414-040424 25621662

16. Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res. 2014;329: 85–93. doi: 10.1016/j.yexcr.2014.09.030 25281304

17. Lambert S, Carr AM. Checkpoint responses to replication fork barriers. Biochimie. 2005;87: 591–602. doi: 10.1016/j.biochi.2004.10.020 15989976

18. Sogo JM, Lopes M, Foiani M. Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects. Science. American Association for the Advancement of Science; 2002;297: 599–602. doi: 10.1126/science.1074023 12142537

19. Groth P, Ausländer S, Majumder MM, Schultz N, Johansson F, Petermann E, et al. Methylated DNA causes a physical block to replication forks independently of damage signalling, O(6)-methylguanine or DNA single-strand breaks and results in DNA damage. J Mol Biol. 2010;402: 70–82. doi: 10.1016/j.jmb.2010.07.010 20643142

20. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller M-C, Shaikh N, et al. Replication stress links structural and numerical cancer chromosomal instability. 2013;494: 492–496. doi: 10.1038/nature11935 23446422

21. Grandin N, Reed SI, Charbonneau M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes & Development. 1997;11: 512–527.

22. Grandin N, Damon C, Charbonneau M. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. The EMBO Journal. 2001;20: 1173–1183. doi: 10.1093/emboj/20.5.1173 11230140

23. Pennock E, Buckley K, Lundblad V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell. 2001;104: 387–396. doi: 10.1016/s0092-8674(01)00226-4 11239396

24. Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V. RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol. 2007;14: 208–214. doi: 10.1038/nsmb1205 17293872

25. Nugent CI, Hughes TR, Lue NF, Lundblad V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science. 1996;274: 249–252. doi: 10.1126/science.274.5285.249 8824190

26. Evans SK, Lundblad V. Est1 and Cdc13 as comediators of telomerase access. Science. 1999;286: 117–120. doi: 10.1126/science.286.5437.117 10506558

27. Garvik B, Carson M, Hartwell L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Molecular and Cellular Biology. 1995;15: 6128–6138. doi: 10.1128/mcb.15.11.6128 7565765

28. Mersaoui SY, Wellinger RJ. Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance. Curr Genet. Springer Berlin Heidelberg; 2019;65: 109–118. doi: 10.1007/s00294-018-0871-3 30066139

29. Faure V, Coulon S, Hardy J, Géli V. Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres. Molecular Cell. 2010;38: 842–852. doi: 10.1016/j.molcel.2010.05.016 20620955

30. Lue NF. Evolving Linear Chromosomes and Telomeres: A C-Strand-Centric View. Trends in Biochemical Sciences. 2018;43: 314–326. doi: 10.1016/j.tibs.2018.02.008 29550242

31. Martín V, Du L-L, Rozenzhak S, Russell P. Protection of telomeres by a conserved Stn1-Ten1 complex. PNAS. 2007;104: 14038–14043. doi: 10.1073/pnas.0705497104 17715303

32. Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC, Warrington R, et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Molecular Cell. Elsevier; 2009;36: 207–218. doi: 10.1016/j.molcel.2009.09.017 19854131

33. Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M, Yonehara S, et al. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Molecular Cell. Elsevier; 2009;36: 193–206. doi: 10.1016/j.molcel.2009.08.009 19854130

34. Chen L-Y, Lingner J. CST for the grand finale of telomere replication. Nucleus. 2013;4: 277–282. doi: 10.4161/nucl.25701 23851344

35. Stewart JA, Wang F, Chaiken MF, Kasbek C, Chastain PD, Wright WE, et al. Human CST promotes telomere duplex replication and general replication restart after fork stalling. The EMBO Journal. EMBO Press; 2012;31: 3537–3549. doi: 10.1038/emboj.2012.215 22863775

36. Kasbek C, Wang F, Price CM. Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J Biol Chem. 2013;288: 30139–30150. doi: 10.1074/jbc.M113.493478 24025336

37. Chastain M, Zhou Q, Shiva O, Fadri-Moskwik M, Whitmore L, Jia P, et al. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress. CellReports. 2016;16: 1300–1314. doi: 10.1016/j.celrep.2016.06.077 27487043

38. Wellinger RJ. The CST complex and telomere maintenance: the exception becomes the rule. Molecular Cell. 2009;36: 168–169. doi: 10.1016/j.molcel.2009.10.001 19854124

39. Anderson BH, Kasher PR, Mayer J, Szynkiewicz M, Jenkinson EM, Bhaskar SS, et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nature Publishing Group. Nature Publishing Group; 2012;44: 338–342. doi: 10.1038/ng.1084 22267198

40. Simon AJ, Lev A, Zhang Y, Weiss B, Rylova A, Eyal E, et al. Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects. J Exp Med. 2016;213: 1429–1440. doi: 10.1084/jem.20151618 27432940

41. Opresko PL, Shay JW. Telomere-associated aging disorders. Ageing Res Rev. 2017;33: 52–66. doi: 10.1016/j.arr.2016.05.009 27215853

42. Chen L-Y, Majerská J, Lingner J. Molecular basis of telomere syndrome caused by CTC1 mutations. Genes & Development. 2013;27: 2099–2108. doi: 10.1101/gad.222893.113 24115768

43. Meeks-Wagner D, Hartwell LH. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell. 1986;44: 43–52. doi: 10.1016/0092-8674(86)90483-6 3510079

44. Admire A, Shanks L, Danzl N, Wang M, Weier U, Stevens W, et al. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes & Development. 2006;20: 159–173. doi: 10.1101/gad.1392506 16384935

45. Weinert TA, Hartwell LH. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Molecular and Cellular Biology. American Society for Microbiology (ASM); 1990;10: 6554–6564. doi: 10.1128/mcb.10.12.6554 2247073

46. Paek AL, Kaochar S, Jones H, Elezaby A, Shanks L, Weinert T. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes & Development. Cold Spring Harbor Lab; 2009;23: 2861–2875. doi: 10.1101/gad.1862709 20008936

47. Beyer T, Weinert T. Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast. Symington LS, editor. PLoS Genet. Public Library of Science; 2016;12: e1006345. doi: 10.1371/journal.pgen.1006345 27716774

48. Vinton PJ, Weinert T. A Slowed Cell Cycle Stabilizes the Budding Yeast Genome. Genetics. Genetics; 2017;206: 811–828. doi: 10.1534/genetics.116.197590 28468908

49. Paschini M, Toro TB, Lubin JW, Braunstein-Ballew B, Morris DK, Lundblad V. A naturally thermolabile activity compromises genetic analysis of telomere function in Saccharomyces cerevisiae. Genetics. Genetics Society of America; 2012;191: 79–93. doi: 10.1534/genetics.111.137869 22377634

50. Carson MJ, Hartwell L. CDC17: an essential gene that prevents telomere elongation in yeast. Cell. 1985;42: 249–257. doi: 10.1016/s0092-8674(85)80120-3 3893744

51. Hartwell LH, Smith D. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics. Genetics Society of America; 1985;110: 381–395. 3894160

52. Liu C-C, Gopalakrishnan V, Poon L-F, Yan T, Li S. Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication. Molecular and Cellular Biology. 2014;34: 57–70. doi: 10.1128/MCB.01235-13 24164896

53. Lin J-J, Zakian VA. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. PNAS. 1996;93: 13760–13765. doi: 10.1073/pnas.93.24.13760 8943008

54. Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rate and genomic instability. Cell. 2001;106: 275–286. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11509177&retmode=ref&cmd=prlinks doi: 10.1016/s0092-8674(01)00457-3 11509177

55. Hackett JA, Greider CW. End resection initiates genomic instability in the absence of telomerase. Molecular and Cellular Biology. 2003;23: 8450–8461. doi: 10.1128/MCB.23.23.8450-8461.2003 14612391

56. Weinert TA, Hartwell LH. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics. Genetics Society of America; 1993;134: 63–80. 8514150

57. Hartwell LH, Culotti J, Pringle JR, Reid BJ. Genetic Control of the Cell Division Cycle in Yeast. Science. American Association for the Advancement of Science; 1974;183: 46–51. doi: 10.1126/science.183.4120.46 4587263

58. Jaspersen SL, Charles JF, Tinker-Kulberg RL, Morgan DO. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol Biol Cell. 1998;9: 2803–2817. doi: 10.1091/mbc.9.10.2803 9763445

59. Grandin N, Damon C, Charbonneau M. Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination. The EMBO Journal. EMBO Press; 2001;20: 6127–6139. doi: 10.1093/emboj/20.21.6127 11689452

60. Grandin N, Charbonneau M. The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae. Molecular and Cellular Biology. 2003;23: 3721–3734. doi: 10.1128/MCB.23.11.3721-3734.2003 12748277

61. Booth C, Griffith E, Brady G, Lydall D. Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction. Nucleic Acids Research. 2001;29: 4414–4422. doi: 10.1093/nar/29.21.4414 11691929

62. Ngo H-P, Lydall D. Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9. Copenhaver GP, editor. PLoS Genet. Public Library of Science; 2010;6: e1001072. doi: 10.1371/journal.pgen.1001072 20808892

63. Vodenicharov MD, Wellinger RJ. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Molecular Cell. Elsevier; 2006;24: 127–137. doi: 10.1016/j.molcel.2006.07.035 17018298

64. Dionne I, Wellinger RJ. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. PNAS. 1996;93: 13902–13907. doi: 10.1073/pnas.93.24.13902 8943033

65. Diede SJ, Gottschling DE. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell. 1999;99: 723–733. doi: 10.1016/s0092-8674(00)81670-0 10619426

66. Hirano Y, Sugimoto K. Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends. Bloom K, editor. Mol Biol Cell. 2007;18: 2026–2036. doi: 10.1091/mbc.E06-12-1074 17377065

67. Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. 2007;28: 638–651. doi: 10.1016/j.molcel.2007.11.001 18042458

68. Lobachev KS, Gordenin DA, Resnick MA. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell. 2002;108: 183–193. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11832209&retmode=ref&cmd=prlinks doi: 10.1016/s0092-8674(02)00614-1 11832209

69. Cannavo E, Cejka P. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature. 2014;514: 122–125. doi: 10.1038/nature13771 25231868

70. Hardy J, Churikov D, Géli V, Simon MN. Sgs1 and Sae2 promote telomere replication by limiting accumulation of ssDNA. Nat Commun. Nature Publishing Group; 2014;5: 5004. doi: 10.1038/ncomms6004 25254351

71. Yu T-Y, Kimble MT, Symington LS. Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection. Proc Natl Acad Sci USA. National Academy of Sciences; 2018;115: E11961–E11969. doi: 10.1073/pnas.1816539115 30510002

72. Deng SK, Yin Y, Petes TD, Symington LS. Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification. Molecular Cell. 2015;60: 500–508. doi: 10.1016/j.molcel.2015.09.027 26545079

73. Lydall D, Weinert T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science. 1995;270: 1488–1491. doi: 10.1126/science.270.5241.1488 7491494

74. Zubko MK, Guillard S, Lydall D. Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics. Genetics Society of America; 2004;168: 103–115. doi: 10.1534/genetics.104.027904 15454530

75. Zegerman P, Diffley JFX. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. Nature Publishing Group; 2010;467: 474–478. doi: 10.1038/nature09373 20835227

76. Maringele L, Lydall D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes & Development. 2002;16: 1919–1933. doi: 10.1101/gad.225102 12154123

77. García-Rodríguez N, Wong RP, Ulrich HD. The helicase Pif1 functions in the template switching pathway of DNA damage bypass. Nucleic Acids Research. 2018;46: 8347–8356. doi: 10.1093/nar/gky648 30107417

78. Özer Ö, Hickson ID. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biol. 2018;8. doi: 10.1098/rsob.180018 29695617

79. Kramara J, Osia B, Malkova A. Break-Induced Replication: The Where, The Why, and The How. Trends Genet. 2018;34: 518–531. doi: 10.1016/j.tig.2018.04.002 29735283

80. Anand RP, Lovett ST, Haber JE. Break-induced DNA replication. Cold Spring Harb Perspect Biol. 2013;5: a010397. doi: 10.1101/cshperspect.a010397 23881940

81. Vasan S, Deem A, Ramakrishnan S, Argueso JL, Malkova A. Cascades of genetic instability resulting from compromised break-induced replication. PLoS Genet. 2014;10: e1004119. doi: 10.1371/journal.pgen.1004119 24586181

Článek vyšel v časopise

PLOS Genetics

2020 Číslo 4

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Zvyšte si kvalifikaci online z pohodlí domova

Snímatelné zubní náhrady a fixační krémy
nový kurz
Autoři: doc. MUDr. Hana Hubálková, Ph.D.

Nová éra v léčbě migrény
Autoři: MUDr. Eva Medová, MUDr. Tomáš Nežádal, Ph.D.

Význam nutraceutik u kardiovaskulárních onemocnění

Pěnová skleroterapie
Autoři: MUDr. Marek Šlais


Všechny kurzy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se