Combined associations of body mass index and adherence to a Mediterranean-like diet with all-cause and cardiovascular mortality: A cohort study


Autoři: Karl Michaëlsson aff001;  John A. Baron aff001;  Liisa Byberg aff001;  Jonas Höijer aff001;  Susanna C. Larsson aff001;  Bodil Svennblad aff001;  Håkan Melhus aff006;  Alicja Wolk aff001;  Eva Warensjö Lemming aff001
Působiště autorů: Department of Surgical Sciences, Uppsala University, Uppsala, Sweden aff001;  Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America aff002;  Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America aff003;  Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America aff004;  Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden aff005;  Department of Medical Sciences, Uppsala University, Uppsala, Sweden aff006
Vyšlo v časopise: Combined associations of body mass index and adherence to a Mediterranean-like diet with all-cause and cardiovascular mortality: A cohort study. PLoS Med 17(9): e32767. doi:10.1371/journal.pmed.1003331
Kategorie: Research Article
doi: 10.1371/journal.pmed.1003331

Souhrn

Background

It is unclear whether the effect on mortality of a higher body mass index (BMI) can be compensated for by adherence to a healthy diet and whether the effect on mortality by a low adherence to a healthy diet can be compensated for by a normal weight. We aimed to evaluate the associations of BMI combined with adherence to a Mediterranean-like diet on all-cause and cardiovascular disease (CVD) mortality.

Methods and findings

Our longitudinal cohort design included the Swedish Mammography Cohort (SMC) and the Cohort of Swedish Men (COSM) (1997–2017), with a total of 79,003 women (44%) and men (56%) and a mean baseline age of 61 years. BMI was categorized into normal weight (20–24.9 kg/m2), overweight (25–29.9 kg/m2), and obesity (30+ kg/m2). Adherence to a Mediterranean-like diet was assessed by means of the modified Mediterranean-like diet (mMED) score, ranging from 0 to 8; mMED was classified into 3 categories (0 to <4, 4 to <6, and 6–8 score points), forming a total of 9 BMI × mMED combinations. We identified mortality by use of national Swedish registers. Cox proportional hazard models with time-updated information on exposure and covariates were used to calculate the adjusted hazard ratios (HRs) of mortality with their 95% confidence intervals (CIs). Our HRs were adjusted for age, baseline educational level, marital status, leisure time physical exercise, walking/cycling, height, energy intake, smoking habits, baseline Charlson’s weighted comorbidity index, and baseline diabetes mellitus. During up to 21 years of follow-up, 30,389 (38%) participants died, corresponding to 22 deaths per 1,000 person-years. We found the lowest HR of all-cause mortality among overweight individuals with high mMED (HR 0.94; 95% CI 0.90, 0.98) compared with those with normal weight and high mMED. Using the same reference, obese individuals with high mMED did not experience significantly higher all-cause mortality (HR 1.03; 95% CI 0.96–1.11). In contrast, compared with those with normal weight and high mMED, individuals with a low mMED had a high mortality despite a normal BMI (HR 1.60; 95% CI 1.48–1.74). We found similar estimates among women and men. For CVD mortality (12,064 deaths) the findings were broadly similar, though obese individuals with high mMED retained a modestly increased risk of CVD death (HR 1.29; 95% CI 1.16–1.44) compared with those with normal weight and high mMED. A main limitation of the present study is the observational design with self-reported lifestyle information with risk of residual or unmeasured confounding (e.g., genetic liability), and no causal inferences can be made based on this study alone.

Conclusions

These findings suggest that diet quality modifies the association between BMI and all-cause mortality in women and men. A healthy diet may, however, not completely counter higher CVD mortality related to obesity.

Klíčová slova:

Body mass index – Body weight – Cardiovascular diseases – Death rates – Diet – Educational attainment – Medical risk factors – Obesity


Zdroje

1. Collaborators GBDO, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017;377(1):13–27. doi: 10.1056/NEJMoa1614362 28604169.

2. Global BMIMC, Di Angelantonio E, Bhupathiraju Sh N, Wormser D, Gao P, Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388(10046):776–86. doi: 10.1016/S0140-6736(16)30175-1 27423262.

3. Bhaskaran K, Dos-Santos-Silva I, Leon DA, Douglas IJ, Smeeth L. Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3.6 million adults in the UK. The lancet Diabetes & endocrinology. 2018;6(12):944–53. doi: 10.1016/S2213-8587(18)30288-2 30389323.

4. Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006;355(8):763–78. doi: 10.1056/NEJMoa055643 16926275.

5. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–9. doi: 10.1056/NEJMoa1000367 21121834.

6. Pearson-Stuttard J, Guzman-Castillo M, Penalvo JL, Rehm CD, Afshin A, Danaei G, et al. Modeling Future Cardiovascular Disease Mortality in the United States: National Trends and Racial and Ethnic Disparities. Circulation. 2016;133(10):967–78. doi: 10.1161/CIRCULATIONAHA.115.019904 26846769.

7. Wilson L, Bhatnagar P, Townsend N. Comparing trends in mortality from cardiovascular disease and cancer in the United Kingdom, 1983–2013: joinpoint regression analysis. Popul Health Metr. 2017;15(1):23. Epub 2017/07/03. doi: 10.1186/s12963-017-0141-5 28668081.

8. Journath G, Hammar N, Elofsson S, Linnersjo A, Vikstrom M, Walldius G, et al. Time Trends in Incidence and Mortality of Acute Myocardial Infarction, and All-Cause Mortality following a Cardiovascular Prevention Program in Sweden. PLoS ONE. 2015;10(11): e0140201. doi: 10.1371/journal.pone.0140201 26580968.

9. Rosengren A, Giang KW, Lappas G, Jern C, Toren K, Bjorck L. Twenty-four-year trends in the incidence of ischemic stroke in Sweden from 1987 to 2010. Stroke. 2013;44(9):2388–93. doi: 10.1161/STROKEAHA.113.001170 23839506.

10. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med. 2007;356(23):2388–98. doi: 10.1056/NEJMsa053935 17554120.

11. Dalen JE, Alpert JS, Goldberg RJ, Weinstein RS. The epidemic of the 20(th) century: coronary heart disease. Am J Med. 2014;127(9):807–12. doi: 10.1016/j.amjmed.2014.04.015 24811552.

12. Veronese N, Li Y, Manson JE, Willett WC, Fontana L, Hu FB. Combined associations of body weight and lifestyle factors with all cause and cause specific mortality in men and women: prospective cohort study. BMJ. 2016;355:i5855. doi: 10.1136/bmj.i5855 27884868.

13. Shan Z, Rehm CD, Rogers G, Ruan M, Wang DD, Hu FB, et al. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999–2016. JAMA. 2019;322(12):1178–87. doi: 10.1001/jama.2019.13771 31550032.

14. Sofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr. 2010;92(5):1189–96. doi: 10.3945/ajcn.2010.29673 20810976.

15. Martinez-Gonzalez MA, Hershey MS, Zazpe I, Trichopoulou A. Transferability of the Mediterranean Diet to Non-Mediterranean Countries. What Is and What Is Not the Mediterranean Diet. Nutrients. 2017;9(11): 1226. doi: 10.3390/nu9111226 29117146.

16. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169(7):659–69. doi: 10.1001/archinternmed.2009.38 19364995.

17. Trichopoulou A, Orfanos P, Norat T, Bueno-de-Mesquita B, Ocke MC, Peeters PH, et al. Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ. 2005;330(7498):991. doi: 10.1136/bmj.38415.644155.8F 15820966.

18. Sotos-Prieto M, Bhupathiraju SN, Mattei J, Fung TT, Li Y, Pan A, et al. Association of Changes in Diet Quality with Total and Cause-Specific Mortality. N Engl J Med. 2017;377(2):143–53. doi: 10.1056/NEJMoa1613502 28700845.

19. de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779–85. doi: 10.1161/01.cir.99.6.779 9989963.

20. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34. doi: 10.1056/NEJMoa1800389 29897866.

21. Martinez-Gonzalez MA, investigators Pto. PREDIMED authors respond to Agarwal and Ioannidis. BMJ. 2019;365:l1575. doi: 10.1136/bmj.l1575 31018914.

22. Warensjo Lemming E, Byberg L, Wolk A, Michaelsson K. A comparison between two healthy diet scores, the modified Mediterranean diet score and the Healthy Nordic Food Index, in relation to all-cause and cause-specific mortality. Br J Nutr. 2018;119(7):836–46. doi: 10.1017/S0007114518000387 29569544.

23. Ahmad S, Moorthy MV, Demler OV, Hu FB, Ridker PM, Chasman DI, et al. Assessment of Risk Factors and Biomarkers Associated With Risk of Cardiovascular Disease Among Women Consuming a Mediterranean Diet. JAMA Netw Open. 2018;1(8):e185708. doi: 10.1001/jamanetworkopen.2018.5708 30646282.

24. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292(12):1440–6. doi: 10.1001/jama.292.12.1440 15383514.

25. Vincent-Baudry S, Defoort C, Gerber M, Bernard MC, Verger P, Helal O, et al. The Medi-RIVAGE study: reduction of cardiovascular disease risk factors after a 3-mo intervention with a Mediterranean-type diet or a low-fat diet. Am J Clin Nutr. 2005;82(5):964–71. doi: 10.1093/ajcn/82.5.964 16280426.

26. Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Covas MI, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145(1):1–11. doi: 10.7326/0003-4819-145-1-200607040-00004 16818923.

27. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359(3):229–41. doi: 10.1056/NEJMoa0708681 18635428.

28. Willis A, Greene M, Braxton-Lloyd K. An Experimental Study of a Mediterranean-style Diet Supplemented with Nuts and Extra-virgin Olive Oil for Cardiovascular Disease Risk Reduction: The Healthy Hearts Program (P12-021-19). Curr Dev Nutr. 2019;3(Suppl 1): nzz035.P12-021-19. doi: 10.1093/cdn/nzz035.P12-021-19 31224649.

29. Rees K, Takeda A, Martin N, Ellis L, Wijesekara D, Vepa A, et al. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2019;3:CD009825. doi: 10.1002/14651858.CD009825.pub3 30864165.

30. Temple NJ, Guercio V, Tavani A. The Mediterranean Diet and Cardiovascular Disease: Gaps in the Evidence and Research Challenges. Cardiol Rev. 2019;27(3):127–30. doi: 10.1097/CRD.0000000000000222 30946700.

31. Becker W, Anderssen SA, Fogelholm M, Gunnarsdottir I, Hursti UKK, Meltzer HM, et al. Nnr 2012: Nordic Nutrition Recommendations—Integrating Nutrition and Physical Activity. Ann Nutr Metab. 2013;63: 897. WOS:000324548203194.

32. Kaluza J, Larsson SC, Linden A, Wolk A. Consumption of Unprocessed and Processed Red Meat and the Risk of Chronic Obstructive Pulmonary Disease: A Prospective Cohort Study of Men. Am J Epidemiol. 2016;184(11):829–36. doi: 10.1093/aje/kww101 27789447.

33. Larsson SC, Bergkvist L, Wolk A. Long-term dietary calcium intake and breast cancer risk in a prospective cohort of women. Am J Clin Nutr. 2009;89(1):277–282. Epub 2008 Dec 3. [pii]: ajcn.2008.26704. doi: 10.3945/ajcn.2008.26704 19056569.

34. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. The New England journal of medicine. 2003;348(26):2599–608. doi: 10.1056/NEJMoa025039 12826634.

35. Tektonidis TG, Åkesson A, Gigante B, Wolk A, Larsson SC. A Mediterranean diet and risk of myocardial infarction, heart failure and stroke: A population-based cohort study. Atherosclerosis. 2015;243(1):93–8. doi: 10.1016/j.atherosclerosis.2015.08.039 26363438

36. Knudsen VK, Matthiessen J, Biltoft-Jensen A, Sorensen MR, Groth MV, Trolle E, et al. Identifying dietary patterns and associated health-related lifestyle factors in the adult Danish population. Eur J Clin Nutr. 2014;68(6):736–40. doi: 10.1038/ejcn.2014.38 24642781.

37. Bellavia A, Tektonidis TG, Orsini N, Wolk A, Larsson SC. Quantifying the benefits of Mediterranean diet in terms of survival. Eur J Epidemiol. 2016;31(5):527–30. doi: 10.1007/s10654-016-0127-9 26848763.

38. Orsini N, Bellocco R, Bottai M, Hagstromer M, Sjostrom M, Pagano M, et al. Validity of self-reported total physical activity questionnaire among older women. Eur J Epidemiol. 2008;23(10):661–7. doi: 10.1007/s10654-008-9273-z 18704705.

39. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8 3558716.

40. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–9. doi: 10.1097/01.mlr.0000182534.19832.83 16224307

41. VanderWeele TJ, Hernan MA, Robins JM. Causal directed acyclic graphs and the direction of unmeasured confounding bias. Epidemiology. 2008;19(5):720–8. doi: 10.1097/EDE.0b013e3181810e29 18633331.

42. Fleiss JL. The statistical basis of meta-analysis. Stat Methods Med Res. 1993;2(2):121–45. doi: 10.1177/096228029300200202 8261254.

43. Austin PC. Absolute risk reductions and numbers needed to treat can be obtained from adjusted survival models for time-to-event outcomes. J Clin Epidemiol. 2010;63(1):46–55. Epub 2009 Jul 12. doi: 10.1016/j.jclinepi.2009.03.012 19595575.

44. Ambrogi F, Biganzoli E, Boracchi P. Model-based estimation of measures of association for time-to-event outcomes. BMC medical research methodology. 2014;14:97. doi: 10.1186/1471-2288-14-97 25106903.

45. Sun YQ, Burgess S, Staley JR, Wood AM, Bell S, Kaptoge SK, et al. Body mass index and all cause mortality in HUNT and UK Biobank studies: linear and non-linear mendelian randomisation analyses. BMJ. 2019;364:l1042. doi: 10.1136/bmj.l1042 30957776.

46. Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO. Clinical Problems Caused by Obesity. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, et al., editors. Endotext. South Dartmouth, MA: MDText.com; 2000.

47. Richard C, Couture P, Desroches S, Lamarche B. Effect of the Mediterranean diet with and without weight loss on markers of inflammation in men with metabolic syndrome. Obesity (Silver Spring). 2013;21(1):51–7. doi: 10.1002/oby.20239 23505168.

48. Lasa A, Miranda J, Bullo M, Casas R, Salas-Salvado J, Larretxi I, et al. Comparative effect of two Mediterranean diets versus a low-fat diet on glycaemic control in individuals with type 2 diabetes. Eur J Clin Nutr. 2014;68(7):767–72. doi: 10.1038/ejcn.2014.1 24518752.

49. Tosti V, Bertozzi B, Fontana L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci. 2018;73(3):318–26. Epub 2017 Dec 13. doi: 10.1093/gerona/glx227 29244059.

50. Bloomfield HE, Koeller E, Greer N, MacDonald R, Kane R, Wilt TJ. Effects on Health Outcomes of a Mediterranean Diet With No Restriction on Fat Intake: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;165(7):491–500. doi: 10.7326/M16-0361 27428849.

51. Dinu M, Pagliai G, Casini A, Sofi F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2018;72(1):30–43. Epub 2017 May 10. doi: 10.1038/ejcn.2017.58 28488692.

52. Schwingshackl L, Hoffmann G. Mediterranean dietary pattern, inflammation and endothelial function: a systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis. 2014;24(9):929–39. doi: 10.1016/j.numecd.2014.03.003 24787907.

53. Billingsley HE, Carbone S. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: an in-depth review of the PREDIMED. Nutr Diabetes. 2018;8(1):13. doi: 10.1038/s41387-018-0025-1 29549354.

54. Lyall DM, Celis-Morales C, Ward J, Iliodromiti S, Anderson JJ, Gill JMR, et al. Association of Body Mass Index With Cardiometabolic Disease in the UK Biobank: A Mendelian Randomization Study. JAMA Cardiol. 2017;2(8):882–9. doi: 10.1001/jamacardio.2016.5804 28678979.

55. Dale CE, Fatemifar G, Palmer TM, White J, Prieto-Merino D, Zabaneh D, et al. Causal Associations of Adiposity and Body Fat Distribution With Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes Mellitus: A Mendelian Randomization Analysis. Circulation. 2017;135(24):2373–88. doi: 10.1161/CIRCULATIONAHA.116.026560 28500271.

56. Larsson SC, Back M, Rees JMB, Mason AM, Burgess S. Body mass index and body composition in relation to 14 cardiovascular conditions in UK Biobank: a Mendelian randomization study. Eur Heart J. 2020;41(2): 221–226. Epub 2019 Jun 13. doi: 10.1093/eurheartj/ehz388 31195408.

57. Liu P, Hao Q, Hai S, Wang H, Cao L, Dong B. Sarcopenia as a predictor of all-cause mortality among community-dwelling older people: A systematic review and meta-analysis. Maturitas. 2017;103:16–22. doi: 10.1016/j.maturitas.2017.04.007 28778327.

58. Marty E, Liu Y, Samuel A, Or O, Lane J. A review of sarcopenia: Enhancing awareness of an increasingly prevalent disease. Bone. 2017;105:276–86. doi: 10.1016/j.bone.2017.09.008 28931495.

59. Karlsson M, Becker W, Michaelsson K, Cederholm T, Sjogren P. Associations between dietary patterns at age 71 and the prevalence of sarcopenia 16 years later. Clin Nutr. 2020;39(4): 1077–1084. Epub 2019 Apr 18. doi: 10.1016/j.clnu.2019.04.009 31036414.

60. Kojima G, Avgerinou C, Iliffe S, Walters K. Adherence to Mediterranean Diet Reduces Incident Frailty Risk: Systematic Review and Meta-Analysis. J Am Geriatr Soc. 2018;66(4):783–8. doi: 10.1111/jgs.15251 29322507.

61. Yarla NS, Polito A, Peluso I. Effects of Olive Oil on TNF-alpha and IL-6 in Humans: Implication in Obesity and Frailty. Endocr Metab Immune Disord Drug Targets. 2018;18(1):63–74. doi: 10.2174/1871530317666171120150329 29165098.

62. Granic A, Sayer AA, Robinson SM. Dietary Patterns, Skeletal Muscle Health, and Sarcopenia in Older Adults. Nutrients. 2019;11(4): 745. doi: 10.3390/nu11040745 30935012; PubMed Central PMCID: PMC6521630.

63. Cauley JA. Osteoporosis: fracture epidemiology update 2016. Curr Opin Rheumatol. 2017;29(2):150–6. doi: 10.1097/BOR.0000000000000365 28072591.

64. Byberg L, Bellavia A, Larsson SC, Orsini N, Wolk A, Michaelsson K. Mediterranean Diet and Hip Fracture in Swedish Men and Women. J Bone Miner Res. 2016;31(12):2098–105. doi: 10.1002/jbmr.2896 27345330.

65. Benetou V, Orfanos P, Feskanich D, Michaelsson K, Pettersson-Kymmer U, Byberg L, et al. Mediterranean diet and hip fracture incidence among older adults: the CHANCES project. Osteoporos Int. 2018;29(7):1591–9. doi: 10.1007/s00198-018-4517-6 29656347.

66. Michaelsson K, Nordstrom P, Nordstrom A, Garmo H, Byberg L, Pedersen NL, et al. Impact of hip fracture on mortality: a cohort study in hip fracture discordant identical twins. J Bone Miner Res. 2014;29(2):424–31. Epub 2013 Jul 2. doi: 10.1002/jbmr.2029 23821464.

67. Katsoulis M, Benetou V, Karapetyan T, Feskanich D, Grodstein F, Pettersson-Kymmer U, et al. Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med. 2017;281(3):300–10. doi: 10.1111/joim.12586 28093824.

68. Dobner J, Kaser S. Body mass index and the risk of infection—from underweight to obesity. Clin Microbiol Infect. 2018;24(1):24–28. Epub 2017 Feb 20. doi: 10.1016/j.cmi.2017.02.013 28232162.

69. Javed AA, Aljied R, Allison DJ, Anderson LN, Ma J, Raina P. Body mass index and all-cause mortality in older adults: A scoping review of observational studies. Obes Rev. 2020;21(8):e13035. Epub 2020 Apr 21. doi: 10.1111/obr.13035 32319198.

70. Weimann A, Braga M, Carli F, Higashiguchi T, Hubner M, Klek S, et al. ESPEN guideline: Clinical nutrition in surgery. Clin Nutr. 2017;36(3):623–50. doi: 10.1016/j.clnu.2017.02.013 28385477.

71. Gillis C, Wischmeyer PE. Pre-operative nutrition and the elective surgical patient: why, how and what? Anaesthesia. 2019;74 Suppl 1:27–35. doi: 10.1111/anae.14506 30604414.

72. Stommel M, Schoenborn CA. Accuracy and usefulness of BMI measures based on self-reported weight and height: findings from the NHANES & NHIS 2001–2006. BMC Public Health. 2009;9:421. doi: 10.1186/1471-2458-9-421 19922675; PubMed Central PMCID: PMC2784464.


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se