#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Long-term survival of children born with congenital anomalies: A systematic review and meta-analysis of population-based studies


Autoři: Svetlana V. Glinianaia aff001;  Joan K. Morris aff002;  Kate E. Best aff001;  Michele Santoro aff003;  Alessio Coi aff003;  Annarita Armaroli aff004;  Judith Rankin aff001
Působiště autorů: Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom aff001;  Population Health Research Institute, St George’s, University of London, London, United Kingdom aff002;  Institute of Clinical Physiology, National Research Council, Pisa, Italy aff003;  Center for Clinical and Epidemiological Research, University of Ferrara, Ferrara, Italy aff004
Vyšlo v časopise: Long-term survival of children born with congenital anomalies: A systematic review and meta-analysis of population-based studies. PLoS Med 17(9): e32767. doi:10.1371/journal.pmed.1003356
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1003356

Souhrn

Background

Following a reduction in global child mortality due to communicable diseases, the relative contribution of congenital anomalies to child mortality is increasing. Although infant survival of children born with congenital anomalies has improved for many anomaly types in recent decades, there is less evidence on survival beyond infancy. We aimed to systematically review, summarise, and quantify the existing population-based data on long-term survival of individuals born with specific major congenital anomalies and examine the factors associated with survival.

Methods and findings

Seven electronic databases (Medline, Embase, Scopus, PsycINFO, CINAHL, ProQuest Natural, and Biological Science Collections), reference lists, and citations of the included articles for studies published 1 January 1995 to 30 April 2020 were searched. Screening for eligibility, data extraction, and quality appraisal were performed in duplicate. We included original population-based studies that reported long-term survival (beyond 1 year of life) of children born with a major congenital anomaly with the follow-up starting from birth that were published in the English language as peer-reviewed papers. Studies on congenital heart defects (CHDs) were excluded because of a recent systematic review of population-based studies of CHD survival. Meta-analysis was performed to pool survival estimates, accounting for trends over time. Of 10,888 identified articles, 55 (n = 367,801 live births) met the inclusion criteria and were summarised narratively, 41 studies (n = 54,676) investigating eight congenital anomaly types (spina bifida [n = 7,422], encephalocele [n = 1,562], oesophageal atresia [n = 6,303], biliary atresia [n = 3,877], diaphragmatic hernia [n = 6,176], gastroschisis [n = 4,845], Down syndrome by presence of CHD [n = 22,317], and trisomy 18 [n = 2,174]) were included in the meta-analysis. These studies covered birth years from 1970 to 2015. Survival for children with spina bifida, oesophageal atresia, biliary atresia, diaphragmatic hernia, gastroschisis, and Down syndrome with an associated CHD has significantly improved over time, with the pooled odds ratios (ORs) of surviving per 10-year increase in birth year being OR = 1.34 (95% confidence interval [95% CI] 1.24–1.46), OR = 1.50 (95% CI 1.38–1.62), OR = 1.62 (95% CI 1.28–2.05), OR = 1.57 (95% CI 1.37–1.81), OR = 1.24 (95% CI 1.02–1.5), and OR = 1.99 (95% CI 1.67–2.37), respectively (p < 0.001 for all, except for gastroschisis [p = 0.029]). There was no observed improvement for children with encephalocele (OR = 0.98, 95% CI 0.95–1.01, p = 0.19) and children with biliary atresia surviving with native liver (OR = 0.96, 95% CI 0.88–1.03, p = 0.26). The presence of additional structural anomalies, low birth weight, and earlier year of birth were the most commonly reported predictors of reduced survival for any congenital anomaly type. The main limitation of the meta-analysis was the small number of studies and the small size of the cohorts, which limited the predictive capabilities of the models resulting in wide confidence intervals.

Conclusions

This systematic review and meta-analysis summarises estimates of long-term survival associated with major congenital anomalies. We report a significant improvement in survival of children with specific congenital anomalies over the last few decades and predict survival estimates up to 20 years of age for those born in 2020. This information is important for the planning and delivery of specialised medical, social, and education services and for counselling affected families. This trial was registered on the PROSPERO database (CRD42017074675).

Klíčová slova:

Cleft lip and palate – Cohort studies – Congenital anomalies – Down syndrome – Children – Metaanalysis – Systematic reviews – Spina bifida


Zdroje

1. Were WM, Daelmans B, Bhutta Z, Duke T, Bahl R, Boschi-Pinto C, et al. Children’s health priorities and interventions. BMJ. 2015;351:h4300. doi: 10.1136/bmj.h4300 26371225.

2. World Health Organization. Health 2015: from MDGs, Millennium Development Goals to SDGs, Sustainable Development Goals. Chapter 4. Snapshot: Child Health. Switzerland: WHO; 2015 [cited 2019 Dec 9]. https://www.who.int/gho/publications/mdgs-sdgs/MDGs-SDGs2015_chapter4_snapshot_child_health.pdf.

3. Australian Institute of Health and Welfare. Australian children. Canberra: AIHW; 2020 [cited 2019 Dec 9]. Contract No.: Cat. no. CWS 69. https://www.aihw.gov.au/getmedia/6af928d6-692e-4449-b915-cf2ca946982f/aihw-cws-69-print-report.pdf.

4. Heron M. Deaths: Leading Causes for 2016. Natl Vital Stat Rep. 2018;67(6):1–77. 30248017.

5. Office for National Statistics. Child and infant mortality in England and Wales: 2016. Statistical bulletin [Internet]. 2018 [cited 2019 Dec 9]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/childhoodinfantandperinatalmortalityinenglandandwales/2016.

6. Agha MM, Williams JI, Marrett L, To T, Dodds L. Determinants of survival in children with congenital abnormalities: a long-term population-based cohort study. Birth Defects Res A Clin Mol Teratol. 2006;76(1):46–54. doi: 10.1002/bdra.20218 16397887.

7. Berger KH, Zhu BP, Copeland G. Mortality throughout early childhood for Michigan children born with congenital anomalies, 1992–1998. Birth Defects Res A Clin Mol Teratol. 2003;67(9):656–61. doi: 10.1002/bdra.10118 14703790.

8. Eide MG, Skjaerven R, Irgens LM, Bjerkedal T, Oyen N. Associations of birth defects with adult intellectual performance, disability and mortality: population-based cohort study. Pediatr Res. 2006;59(6):848–53. doi: 10.1203/01.pdr.0000219172.16638.f9 16641211.

9. Oddsberg J, Lu Y, Lagergren J. Aspects of esophageal atresia in a population-based setting: incidence, mortality, and cancer risk. Pediatr Surg Int. 2012;28(3):249–57. https://dx.doi.org/10.1007/s00383-011-3014-1. 22020495.

10. Wolfe I, Thompson M, Gill P, Tamburlini G, Blair M, van den Bruel A, et al. Health services for children in western Europe. Lancet. 2013;381(9873):1224–34. doi: 10.1016/S0140-6736(12)62085-6 23541056.

11. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41. doi: 10.1016/j.ijsu.2010.02.007 20171303.

12. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. doi: 10.1186/s13643-016-0384-4 27919275

13. Folkestad L, Hald JD, Canudas-Romo V, Gram J, Hermann AP, Langdahl B, et al. Mortality and Causes of Death in Patients With Osteogenesis Imperfecta: A Register-Based Nationwide Cohort Study. J Bone Miner Res. 2016;31(12):2159–66. https://dx.doi.org/10.1002/jbmr.2895. 27345018.

14. Rankin J, Tennant PW, Bythell M, Pearce MS. Predictors of survival in children born with Down syndrome: a registry-based study. Pediatrics. 2012;129(6):e1373–81. https://dx.doi.org/10.1542/peds.2011-3051. 22614780.

15. Tennant PW, Pearce MS, Bythell M, Rankin J. 20-year survival of children born with congenital anomalies: a population-based study. Lancet. 2010;375(9715):649–56. https://dx.doi.org/10.1016/S0140-6736(09)61922-X. 20092884.

16. Bell JC, Nassar N, Bower C, Turner RM, Raynes-Greenow C. Long-term survival for infants born with orofacial clefts in Western Australia. Birth Defects Res A Clin Mol Teratol. 2016;106(3):172–7. https://dx.doi.org/10.1002/bdra.23473. 26663708.

17. Dastgiri S, Gilmour WH, Stone DH. Survival of children born with congenital anomalies. Arch Dis Child. 2003;88(5):391–4. doi: 10.1136/adc.88.5.391 12716706.

18. Hinton CF, Siffel C, Correa A, Shapira SK. Survival Disparities Associated with Congenital Diaphragmatic Hernia. Birth Defects Res A Clin Mol Teratol. 2017;109(11):816–23. doi: 10.1002/bdr2.1015 28398654.

19. Kucik JE, Shin M, Siffel C, Marengo L, Correa A. Trends in survival among children with down syndrome in 10 regions of the united states. Pediatrics. 2013;131(1):e27–e36. http://dx.doi.org/10.1542/peds.2012-1616. 23248222.

20. Simmons K, Hashmi SS, Scheuerle A, Canfield M, Hecht JT. Mortality in babies with achondroplasia: revisited. Birth Defects Res A Clin Mol Teratol. 2014;100(4):247–9. https://dx.doi.org/10.1002/bdra.23210. 24677650.

21. Risby K, Husby S, Qvist N, Jakobsen MS. High mortality among children with gastroschisis after the neonatal period: A long-term follow-up study. J Pediatr Surg. 2017;52(3):431–6. https://dx.doi.org/10.1016/j.jpedsurg.2016.08.022. 27665495.

22. Brodwall K, Greve G, Leirgul E, Klungsøyr K, Holmstrøm H, Vollset SE, et al. The five-year survival of children with Down syndrome in Norway 1994–2009 differed by associated congenital heart defects and extracardiac malformations. Acta Paediatr Int J Paediatr. 2018;107(5):845–53. doi: 10.1111/apa.14223 29341296

23. Burgos CM, Frenckner B. Addressing the hidden mortality in CDH: A population-based study. J Pediatr Surg. 2017;52(4):522–5. https://dx.doi.org/10.1016/j.jpedsurg.2016.09.061. 27745705.

24. Löf Granström A, Wester T. Mortality in Swedish patients with Hirschsprung disease. Pediatr Surg Int. 2017;33(11):1177–81. http://dx.doi.org/10.1007/s00383-017-4150-z. 28884210.

25. Nelson KE, Rosella LC, Mahant S, Guttmann A. Survival and Surgical Interventions for Children With Trisomy 13 and 18. JAMA. 2016;316(4):420–8. doi: 10.1001/jama.2016.9819 27458947.

26. European Surveillance of Congenital Anomalies. Chapter 3.3: EUROCAT Subgroups of Congenital Anomalies (Version 2014). EUROCAT Guide 14 and reference documents. Newtownabbey, UK: EUROCAT Central Registry; 2013.

27. European Surveillance of Congenital Anomalies. Chapter 3.2: Minor Anomalies for Exclusion. EUROCAT Guide 14 and reference documents. Newtownabbey, UK: EUROCAT Central Registry; 2013.

28. Best KE, Rankin J. Long-Term Survival of Individuals Born With Congenital Heart Disease: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2016;5(6):e002846. doi: 10.1161/JAHA.115.002846 27312802.

29. Newcombe RG. Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods. Stat Med. 1998;17(8):857–72. doi: 10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e 9595616

30. Wilson EB. Probable Inference, the Law of Succession, and Statistical Inference. J Amer Stat Assoc. 1927;22:209–12

31. Plot DIgitizer. May 2018 [cited 2019 Dec 9]. http://plotdigitizer.sourceforge.net/.

32. Bagos PG. Meta-analysis in Stata using gllamm. Research synthesis methods. 2015;6(4):310–32. doi: 10.1002/jrsm.1157 26612788.

33. Rabe-Hesketh S, Skrondal A, Pickles A. Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. J Econometrics. 2005;128(2):301–23. doi: 10.1016/j.jeconom.2004.08.017

34. Schwarzer G, Chemaitelly H, Abu-Raddad LJ, Rucker G. Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions. Research synthesis methods. 2019;10(3):476–83. doi: 10.1002/jrsm.1348 30945438.

35. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non randomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute; 2009.

36. Chardot C, Buet C, Serinet MO, Golmard JL, Lachaux A, Roquelaure B, et al. Improving outcomes of biliary atresia: French national series 1986–2009. J Hepatol. 2013;58(6):1209–17. doi: 10.1016/j.jhep.2013.01.040 23402746.

37. Davenport M, Ong E, Sharif K, Alizai N, McClean P, Hadzic N, et al. Biliary atresia in England and Wales: results of centralization and new benchmark. J Pediatr Surg. 2011;46(9):1689–94. doi: 10.1016/j.jpedsurg.2011.04.013 21929975.

38. McKiernan PJ, Baker AJ, Lloyd C, Mieli-Vergani G, Kelly DA. British paediatric surveillance unit study of biliary atresia: outcome at 13 years. J Pediatr Gastroenterol Nutr. 2009;48(1):78–81. doi: 10.1097/MPG.0b013e31817d80de 19172128.

39. McKiernan PJ, Baker AJ, Kelly DA. The frequency and outcome of biliary atresia in the UK and Ireland. Lancet. 2000;355(9197):25–9. doi: 10.1016/S0140-6736(99)03492-3 10615887.

40. Wang Y, Hu J, Druschel CM, Kirby RS. Twenty-five-year survival of children with birth defects in New York State: a population-based study. Birth Defects Res A Clin Mol Teratol. 2011;91(12):995–1003. https://dx.doi.org/10.1002/bdra.22858. 21960515.

41. Wang Y, Liu G, Canfield MA, Mai CT, Gilboa SM, Meyer RE, et al. Racial/ethnic differences in survival of United States children with birth defects: A population-based study. J Pediatr. 2015;166(4):819–26.e2. http://dx.doi.org/10.1016/j.jpeds.2014.12.025. 25641238.

42. Schneuer FJ, Bell JC, Shand AW, Walker K, Badawi N, Nassar N. Five-year survival of infants with major congenital anomalies: a registry based study. Acta Paediatr Int J Paediatr. 2019;108(11):2008–18. http://dx.doi.org/10.1111/apa.14833. 628179265.

43. Nembhard WN, Salemi JL, Ethen MK, Fixler DE, Canfield MA. Mortality among infants with birth defects: Joint effects of size at birth, gestational age, and maternal race/ethnicity. Birth Defects Res A Clin Mol Teratol. 2010;88(9):728–36. https://dx.doi.org/10.1002/bdra.20696. 20672351.

44. Sutton M, Daly LE, Kirke PN. Survival and disability in a cohort of neural tube defect births in Dublin, Ireland. Birth Defects Res A Clin Mol Teratol. 2008;82(10):701–9. doi: 10.1002/bdra.20498 18803309.

45. Borgstedt-Bakke JH, Fenger-Gron M, Rasmussen MM. Correlation of mortality with lesion level in patients with myelomeningocele: a population-based study. J Neurosurg Pediatrics. 2017;19(2):227–31. https://dx.doi.org/10.3171/2016.8.PEDS1654. 27911247.

46. Shin M, Kucik JE, Siffel C, Lu C, Shaw GM, Canfield MA, et al. Improved survival among children with spina bifida in the United States. J Pediatr. 2012;161(6):1132–7. doi: 10.1016/j.jpeds.2012.05.040 22727874.

47. Siffel C, Wong LY, Olney RS, Correa A. Survival of infants diagnosed with encephalocele in Atlanta, 1979–98. Paediatr Perinat Epidemiol. 2003;17(1):40–8. doi: 10.1046/j.1365-3016.2003.00471.x 12562471.

48. Wong LY, Paulozzi LJ. Survival of infants with spina bifida: a population study, 1979–94. Paediatr Perinat Epidemiol. 2001;15(4):374–8. doi: 10.1046/j.1365-3016.2001.00371.x 11703686.

49. Bakker MK, Kancherla V, Canfield MA, Bermejo-Sanchez E, Cragan JD, Dastgiri S, et al. Analysis of Mortality among Neonates and Children with Spina Bifida: An International Registry-Based Study, 2001–2012. Paediatr Perinat Epidemiol. 2019;33(6):436–48. doi: 10.1111/ppe.12589 31637749.

50. Cassina M, Ruol M, Pertile R, Midrio P, Piffer S, Vicenzi V, et al. Prevalence, characteristics, and survival of children with esophageal atresia: A 32-year population-based study including 1,417,724 consecutive newborns. Birth Defects Res A Clin Mol Teratol. 2016;106(7):542–8. https://dx.doi.org/10.1002/bdra.23493. 26931365.

51. Garne E, Rasmussen L, Husby S. Gastrointestinal malformations in Funen county, Denmark—epidemiology, associated malformations, surgery and mortality. Eur J Pediatr Surg. 2002;12(2):101–6. doi: 10.1055/s-2002-30158 12015653.

52. Cassina M, Fascetti Leon F, Ruol M, Chiarenza SF, Scire G, Midrio P, et al. Prevalence and survival of patients with anorectal malformations: A population-based study. J Pediatr Surg. 2019;54(10):1998–2003. https://dx.doi.org/10.1016/j.jpedsurg.2019.03.004. 30935729.

53. Gudbjartsson T, Gunnarsdottir A, Topan CZ, Larsson LT, Rosmundsson T, Dagbjartsson A. Congenital diaphragmatic hernia: Improved surgical results should influence abortion decision making. Scand J Surg. 2008;97(1):71–6. doi: 10.1177/145749690809700110 18450209.

54. Jaillard SM, Pierrat V, Dubois A, Truffert P, Lequien P, Wurtz AJ, et al. Outcome at 2 years of infants with congenital diaphragmatic hernia: a population-based study. Ann Thorac Surg. 2003;75(1):250–6. doi: 10.1016/s0003-4975(02)04278-9 12537224.

55. De Carvalho E, Santos JL, Silveira TR, Kieling CO, Silva LR, Porta G, et al. Biliary atresia: the Brazilian experience. J Pediatr (Rio J). 2010;86(6):473–9. doi: 10.2223/JPED.2054 21140036.

56. de Vries W, Homan-Van der Veen J, Hulscher JB, Hoekstra-Weebers JE, Houwen RH, Verkade HJ, et al. Twenty-year transplant-free survival rate among patients with biliary atresia. Clin Gastroenterol Hepatol. 2011;9(12):1086–91. doi: 10.1016/j.cgh.2011.07.024 21820397.

57. Grizelj R, Vukovic J, Novak M, Batinica S. Biliary atresia: the Croatian experience 1992–2006. Eur J Pediatr. 2010;169(12):1529–34. doi: 10.1007/s00431-010-1266-8 20669030.

58. Pakarinen MP, Johansen LS, Svensson JF, Bjornland K, Gatzinsky V, Stenstrom P, et al. Outcomes of biliary atresia in the Nordic countries—a multicenter study of 158 patients during 2005–2016. J Pediatr Surg. 2018;53(8):1509–15. doi: 10.1016/j.jpedsurg.2017.08.048 28947328.

59. Tu CG, Khurana S, Couper R, Ford AW. Kasai hepatoportoenterostomy in South Australia: a case for ‘centralized decentralization'. ANZ J Surg. 2015;85(11):865–8. doi: 10.1111/ans.12522 24529070.

60. Lampela H, Ritvanen A, Kosola S, Koivusalo A, Rintala R, Jalanko H, et al. National centralization of biliary atresia care to an assigned multidisciplinary team provides high-quality outcomes. Scand J Gastroenterol. 2012;47(1):99–107. https://dx.doi.org/10.3109/00365521.2011.627446. 22171974.

61. Leonhardt J, Kuebler JF, Leute PJ, Turowski C, Becker T, Pfister ED, et al. Biliary atresia: lessons learned from the voluntary German registry. Eur J Pediatr Surg. 2011;21(2):82–7. https://dx.doi.org/10.1055/s-0030-1268476. 21157692.

62. Nio M, Ohi R, Miyano T, Saeki M, Shiraki K, Tanaka K. Five- and 10-year survival rates after surgery for biliary atresia: A report from the Japanese Biliary Atresia Registry. J Pediatr Surg. 2003;38(7):997–1000. http://dx.doi.org/10.1016/S0022-3468%2803%2900178-7. 12861525.

63. Schreiber RA, Barker CC, Roberts EA, Martin SR, Alvarez F, Smith L, et al. Biliary atresia: the Canadian experience. J Pediatr. 2007;151(6):659–65, 65 e1. doi: 10.1016/j.jpeds.2007.05.051 18035148.

64. Wildhaber BE, Majno P, Mayr J, Zachariou Z, Hohlfeld J, Schwoebel M, et al. Biliary atresia: Swiss national study, 1994–2004. J Pediatr Gastroenterol Nutr. 2008;46(3):299–307. doi: 10.1097/MPG.0b013e3181633562 18376248.

65. Frid C, Drott P, Lundell B, Rasmussen F, Anneren G. Mortality in Down’s syndrome in relation to congenital malformations. J Intellect Disabil Res. 1999;43(Pt 3):234–41. doi: 10.1046/j.1365-2788.1999.00198.x 10392609.

66. Glasson EJ, Jacques A, Wong K, Bourke J, Leonard H. Improved Survival in Down Syndrome over the Last 60 Years and the Impact of Perinatal Factors in Recent Decades. J Pediatr. 2016;169:214–20.e1. https://dx.doi.org/10.1016/j.jpeds.2015.10.083. 26651430.

67. Halliday J, Collins V, Riley M, Youssef D, Muggli E. Has prenatal screening influenced the prevalence of comorbidities associated with Down syndrome and subsequent survival rates? Pediatrics. 2009;123(1):256–61. https://dx.doi.org/10.1542/peds.2007-2840. 19117890.

68. Hayes C, Johnson Z, Thornton L, Fogarty J, Lyons R, O’Connor M, et al. Ten-year survival of Down syndrome births. Int J Epidemiol. 1997;26(4):822–9. doi: 10.1093/ije/26.4.822 9279615.

69. Leonard S, Bower C, Petterson B, Leonard H. Survival of infants born with Down’s syndrome: 1980–96. Paediatr Perinat Epidemiol. 2000;14(2):163–71. doi: 10.1046/j.1365-3016.2000.00252.x 10791661.

70. Rasmussen SA, Wong LY, Correa A, Gambrell D, Friedman JM. Survival in infants with Down syndrome, Metropolitan Atlanta, 1979–1998. J Pediatr. 2006;148(6):806–12. doi: 10.1016/j.jpeds.2006.01.010 16769392.

71. Chua GT, Tung KTS, Wong ICK, Lum TYS, Wong WHS, Chow CB, et al. Mortality Among Children with Down syndrome in Hong Kong: A Population-Based Cohort Study from Birth. J Pediatr. 2020;218:138–45. http://dx.doi.org/10.1016/j.jpeds.2019.11.006. 31928800.

72. Meyer RE, Liu G, Gilboa SM, Ethen MK, Aylsworth AS, Powell CM, et al. Survival of children with trisomy 13 and trisomy 18: A multi-state population-based study. Am J Med Genet A. 2016;170A(4):825–37. https://dx.doi.org/10.1002/ajmg.a.37495. 26663415.

73. Lionti T, Reid SM, Rowell MM. Prader-Willi syndrome in Victoria: mortality and causes of death. J Paediatr Child Health. 2012;48(6):506–11. https://dx.doi.org/10.1111/j.1440-1754.2011.02225.x. 22697408.

74. Liu S, Joseph KS, Kramer MS, Allen AC, Sauve R, Rusen ID, et al. Relationship of prenatal diagnosis and pregnancy termination to overall infant mortality in Canada. JAMA. 2002;287(12):1561–7. doi: 10.1001/jama.287.12.1561 11911759.

75. Farrant BM, Stanley FJ, Hardelid P, Shepherd CC. Stillbirth and neonatal death rates across time: the influence of pregnancy terminations and birth defects in a Western Australian population-based cohort study. BMC Pregnancy Childbirth. 2016;16:112. doi: 10.1186/s12884-016-0904-1 27188164.

76. Bol KA, Collins JS, Kirby RS, National Birth Defects Prevention N. Survival of infants with neural tube defects in the presence of folic acid fortification. Pediatrics. 2006;117(3):803–13. doi: 10.1542/peds.2005-1364 16510661.

77. Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS. Spina bifida. Lancet. 2004;364(9448):1885–95. doi: 10.1016/S0140-6736(04)17445-X 15555669.

78. Moldenhauer JS, Flake AW. Open fetal surgery for neural tube defects. Best Pract Res Clin Obstet Gynaecol. 2019;58:121–32. doi: 10.1016/j.bpobgyn.2019.03.004 31078425.

79. Dingeldein M. Congenital Diaphragmatic Hernia: Management & Outcomes. Adv Pediatr. 2018;65(1):241–7. doi: 10.1016/j.yapd.2018.05.001 30053927.

80. Jimenez-Rivera C, Jolin-Dahel KS, Fortinsky KJ, Gozdyra P, Benchimol EI. International incidence and outcomes of biliary atresia. J Pediatr Gastroenterol Nutr. 2013;56(4):344–54. doi: 10.1097/MPG.0b013e318282a913 23263590.

81. Boghossian NS, Hansen NI, Bell EF, Stoll BJ, Murray JC, Laptook AR, et al. Survival and morbidity outcomes for very low birth weight infants with Down syndrome. Pediatrics. 2010;126(6):1132–40. doi: 10.1542/peds.2010-1824 21098157.

82. Korten MA, Helm PC, Abdul-Khaliq H, Baumgartner H, Kececioglu D, Schlensak C, et al. Eisenmenger syndrome and long-term survival in patients with Down syndrome and congenital heart disease. Heart. 2016;102(19):1552–7. doi: 10.1136/heartjnl-2016-309437 27325590.

83. Dimopoulos K, Kempny A. Patients with Down syndrome and congenital heart disease: survival is improving, but challenges remain. Heart. 2016;102(19):1515–7. doi: 10.1136/heartjnl-2016-309835 27354276.

84. Tonks AM, Gornall AS, Larkins SA, Gardosi JO. Trisomies 18 and 13: trends in prevalence and prenatal diagnosis—population based study. Prenat Diagn. 2013;33(8):742–50. doi: 10.1002/pd.4117 23553654.

85. Carey JC. Emerging evidence that medical and surgical interventions improve the survival and outcome in the trisomy 13 and 18 syndromes. Am J Med Genet A. 2020;182(1):13–4. doi: 10.1002/ajmg.a.61370 31609083.

86. McCaffrey MJ. Trisomy 13 and 18: Selecting the road previously not taken. Am J Med Genet C Semin Med Genet. 2016;172(3):251–6. doi: 10.1002/ajmg.c.31512 27519759.

87. Pallotto I, Lantos JD. Treatment Decisions for Babies with Trisomy 13 and 18. HEC Forum. 2017;29(3):213–22. doi: 10.1007/s10730-017-9319-2 28365826

88. Office for National Statistics. Child and infant mortality in England and Wales: 2017. Statistical bulletin [Internet]. 2019 [cited xxxx]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/childhoodinfantandperinatalmortalityinenglandandwales/2017.

89. Royal College of Paediatrics and Child Health. State of Child Health 2017: Report 2017. 2017 [2019 Oct 4]. https://www.rcpch.ac.uk/resources/state-child-health-2017-full-report.

90. Neasham D, Dolk H, Vrijheid M, Jensen T, Best N. Stillbirth and neonatal mortality due to congenital anomalies: temporal trends and variation by small area deprivation scores in England and Wales, 1986–96. Paediatr Perinat Epidemiol. 2001;15(4):364–73. doi: 10.1046/j.1365-3016.2001.0379a.x 11703685.

91. Smith LK, Budd JL, Field DJ, Draper ES. Socioeconomic inequalities in outcome of pregnancy and neonatal mortality associated with congenital anomalies: population based study. BMJ. 2011;343:d4306. doi: 10.1136/bmj.d4306 21771825.

92. Papaioannou D, Sutton A, Carroll C, Booth A, Wong R. Literature searching for social science systematic reviews: consideration of a range of search techniques. Health Info Libr J. 2010;27(2):114–22. doi: 10.1111/j.1471-1842.2009.00863.x 20565552.

93. Wolfe I, Donkin A, Marmot M, Macfarlane A, Cass H, Viner R. UK child survival in a European context: recommendations for a national Countdown Collaboration. Arch Dis Child. 2015;100(10):907–14. doi: 10.1136/archdischild-2014-306752 25957319.

94. Best KE, Vieira R, Glinianaia SV, Rankin J. Socio-economic inequalities in mortality in children with congenital heart disease: A systematic review and meta-analysis. Paediatr Perinat Epidemiol. 2019;33(4):291–309. doi: 10.1111/ppe.12564 31347722.

95. Luchini C, Stubbs B, Solmi M, Veronese N. Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. World J Meta-Anal. 2017;5(4):80–4. doi: 10.13105/wjma.v5.i4.80


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Halitóza
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#