NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways

Autoři: Zhentao Sheng aff001;  Wei Du aff001
Působiště autorů: Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America aff001
Vyšlo v časopise: NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008863
Kategorie: Research Article


Inactivation of the Rb tumor suppressor causes context-dependent increases in cell proliferation or cell death. In a genetic screen for factors that promoted Rb mutant cell death in Drosophila, we identified Psid, a regulatory subunit of N-terminal acetyltransferase B (NatB). We showed that NatB subunits were required for elevated EGFR/MAPK signaling and Rb mutant cell survival. We showed that NatB regulates the posttranscriptional levels of the highly conserved pathway components Grb2/Drk, MAPK, and PP2AC but not that of the less conserved Sprouty. Interestingly, NatB increased the levels of positive pathway components Grb2/Drk and MAPK while decreased the levels of negative pathway component PP2AC, which were mediated by the distinct N-end rule branch E3 ubiquitin ligases Ubr4 and Cnot4, respectively. These results suggest a novel mechanism by which NatB and N-end rule pathways modulate EGFR/MAPK signaling by inversely regulating the levels of multiple conserved positive and negative pathway components. As inactivation of Psid blocked EGFR signaling-dependent tumor growth, this study raises the possibility that NatB is potentially a novel therapeutic target for cancers dependent on deregulated EGFR/Ras signaling.

Klíčová slova:

Cell death – Cloning – Drosophila melanogaster – EGFR signaling – Eyes – MAPK signaling cascades – RNA interference – Ubiquitin ligases


1. Sherr CJ (1996) Cancer cell cycles. Science 274: 1672–1677. doi: 10.1126/science.274.5293.1672 8939849

2. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2: 103–112. doi: 10.1016/s1535-6108(02)00102-2 12204530

3. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, et al. (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16: 245–256. doi: 10.1101/gad.949802 11799067

4. Dimova DK, Stevaux O, Frolov MV, Dyson NJ (2003) Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev 17: 2308–2320. doi: 10.1101/gad.1116703 12975318

5. Korenjak M, Taylor-Harding B, Binne UK, Satterlee JS, Stevaux O, et al. (2004) Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 119: 181–193. doi: 10.1016/j.cell.2004.09.034 15479636

6. van den Heuvel S, Dyson NJ (2008) Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 9: 713–724. doi: 10.1038/nrm2469 18719710

7. Du W, Pogoriler J (2006) Retinoblastoma family genes. Oncogene 25: 5190–5200. doi: 10.1038/sj.onc.1209651 16936737

8. Dick FA, Goodrich DW, Sage J, Dyson NJ (2018) Non-canonical functions of the RB protein in cancer. Nat Rev Cancer 18: 442–451. doi: 10.1038/s41568-018-0008-5 29692417

9. Gordon GM, Du W (2011) Targeting Rb inactivation in cancers by synthetic lethality. Am J Cancer Res 1: 773–786. 21814623

10. Du W, Searle JS (2009) The rb pathway and cancer therapeutics. Curr Drug Targets 10: 581–589. doi: 10.2174/138945009788680392 19601762

11. Du W, Vidal M, Xie JE, Dyson N (1996) RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev 10: 1206–1218. doi: 10.1101/gad.10.10.1206 8675008

12. Frolov MV, Huen DS, Stevaux O, Dimova D, Balczarek-Strang K, et al. (2001) Functional antagonism between E2F family members. Genes Dev 15: 2146–2160. doi: 10.1101/gad.903901 11511545

13. Stevaux O, Dimova D, Frolov MV, Taylor-Harding B, Morris E, et al. (2002) Distinct mechanisms of E2F regulation by Drosophila RBF1 and RBF2. Embo J 21: 4927–4937. doi: 10.1093/emboj/cdf501 12234932

14. Dynlacht BD, Brook A, Dembski M, Yenush L, Dyson N (1994) DNA-binding and trans-activation properties of Drosophila E2F and DP proteins. Proc Natl Acad Sci U S A 91: 6359–6363. doi: 10.1073/pnas.91.14.6359 8022787

15. Du W (2000) Suppression of the rbf null mutants by a de2f1 allele that lacks transactivation domain. Development 127: 367–379. 10603353

16. Moon NS, Di Stefano L, Dyson N (2006) A gradient of epidermal growth factor receptor signaling determines the sensitivity of rbf1 mutant cells to E2F-dependent apoptosis. Mol Cell Biol 26: 7601–7615. doi: 10.1128/MCB.00836-06 16954388

17. Tanaka-Matakatsu M, Xu J, Cheng L, Du W (2009) Regulation of apoptosis of rbf mutant cells during Drosophila development. Dev Biol 326: 347–356. doi: 10.1016/j.ydbio.2008.11.035 19100727

18. Li B, Gordon GM, Du CH, Xu J, Du W (2010) Specific killing of Rb mutant cancer cells by inactivating TSC2. Cancer Cell 17: 469–480. doi: 10.1016/j.ccr.2010.03.019 20478529

19. Zhang T, Liao Y, Hsu FN, Zhang R, Searle JS, et al. (2014) Hyperactivated Wnt Signaling Induces Synthetic Lethal Interaction with Rb Inactivation by Elevating TORC1 Activities. PLoS Genet 10: e1004357. doi: 10.1371/journal.pgen.1004357 24809668

20. Gordon GM, Zhang T, Zhao J, Du W (2013) Deregulated G1-S control and energy stress contribute to the synthetic-lethal interactions between inactivation of RB and TSC1 or TSC2. J Cell Sci 126: 2004–2013. doi: 10.1242/jcs.121301 23447678

21. Ariss MM, Islam A, Critcher M, Zappia MP, Frolov MV (2018) Single cell RNA-sequencing identifies a metabolic aspect of apoptosis in Rbf mutant. Nat Commun 9: 5024. doi: 10.1038/s41467-018-07540-z 30479347

22. Zhang T, Du W (2015) Groucho restricts rhomboid expression and couples EGFR activation with R8 selection during Drosophila photoreceptor differentiation. Dev Biol 407: 246–255. doi: 10.1016/j.ydbio.2015.09.011 26417727

23. Baker NE, Yu SY (2001) The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104: 699–708. doi: 10.1016/s0092-8674(01)00266-5 11257224

24. Sheng Z, Yu L, Zhang T, Pei X, Li X, et al. (2016) ESCRT-0 complex modulates Rbf-mutant cell survival by regulating Rhomboid endosomal trafficking and EGFR signaling. J Cell Sci 129: 2075–2084. doi: 10.1242/jcs.182261 27056762

25. Sukhanova MJ, Steele LJ, Zhang T, Gordon GM, Du W (2011) RBF and Rno promote photoreceptor differentiation onset through modulating EGFR signaling in the Drosophila developing eye. Dev Biol 359: 190–198. doi: 10.1016/j.ydbio.2011.08.018 21920355

26. Bergmann A, Agapite J, McCall K, Steller H (1998) The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95: 331–341. doi: 10.1016/s0092-8674(00)81765-1 9814704

27. Moreno E, Basler K, Morata G (2002) Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416: 755–759. doi: 10.1038/416755a 11961558

28. Kim JH, Cho A, Yin H, Schafer DA, Mouneimne G, et al. (2011) Psidin, a conserved protein that regulates protrusion dynamics and cell migration. Genes Dev 25: 730–741. doi: 10.1101/gad.2028611 21406550

29. Stephan D, Sanchez-Soriano N, Loschek LF, Gerhards R, Gutmann S, et al. (2012) Drosophila Psidin regulates olfactory neuron number and axon targeting through two distinct molecular mechanisms. J Neurosci 32: 16080–16094. doi: 10.1523/JNEUROSCI.3116-12.2012 23152593

30. Lee KE, Heo JE, Kim JM, Hwang CS (2016) N-Terminal Acetylation-Targeted N-End Rule Proteolytic System: The Ac/N-End Rule Pathway. Mol Cells 39: 169–178. doi: 10.14348/molcells.2016.2329 26883906

31. Dominguez M, Wasserman JD, Freeman M (1998) Multiple functions of the EGF receptor in Drosophila eye development. Curr Biol 8: 1039–1048. doi: 10.1016/s0960-9822(98)70441-5 9768358

32. Trost M, English L, Lemieux S, Courcelles M, Desjardins M, et al. (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30: 143–154. doi: 10.1016/j.immuni.2008.11.006 19144319

33. Tio M, Moses K (1997) The Drosophila TGF alpha homolog Spitz acts in photoreceptor recruitment in the developing retina. Development 124: 343–351. 9053310

34. Starheim KK, Gevaert K, Arnesen T (2012) Protein N-terminal acetyltransferases: when the start matters. Trends Biochem Sci 37: 152–161. doi: 10.1016/j.tibs.2012.02.003 22405572

35. Ree R, Varland S, Arnesen T (2018) Spotlight on protein N-terminal acetylation. Exp Mol Med 50: 90.

36. Moressis A, Friedrich AR, Pavlopoulos E, Davis RL, Skoulakis EM (2009) A dual role for the adaptor protein DRK in Drosophila olfactory learning and memory. J Neurosci 29: 2611–2625. doi: 10.1523/JNEUROSCI.3670-08.2009 19244537

37. Tasaki T, Sriram SM, Park KS, Kwon YT (2012) The N-end rule pathway. Annu Rev Biochem 81: 261–289. doi: 10.1146/annurev-biochem-051710-093308 22524314

38. Varshavsky A (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci 20: 1298–1345. doi: 10.1002/pro.666 21633985

39. Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, et al. (2010) Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat Struct Mol Biol 17: 1175–1181. doi: 10.1038/nsmb.1907 20835240

40. Wassarman DA, Solomon NM, Chang HC, Karim FD, Therrien M, et al. (1996) Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila. Genes Dev 10: 272–278. doi: 10.1101/gad.10.3.272 8595878

41. Silverstein AM, Barrow CA, Davis AJ, Mumby MC (2002) Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci U S A 99: 4221–4226. doi: 10.1073/pnas.072071699 11904383

42. Gergs U, Boknik P, Buchwalow I, Fabritz L, Matus M, et al. (2004) Overexpression of the catalytic subunit of protein phosphatase 2A impairs cardiac function. J Biol Chem 279: 40827–40834. doi: 10.1074/jbc.M405770200 15247211

43. Park SE, Kim JM, Seok OH, Cho H, Wadas B, et al. (2015) Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 347: 1249–1252. doi: 10.1126/science.aaa3844 25766235

44. Ashton-Beaucage D, Lemieux C, Udell CM, Sahmi M, Rochette S, et al. (2016) The Deubiquitinase USP47 Stabilizes MAPK by Counteracting the Function of the N-end Rule ligase POE/UBR4 in Drosophila. PLoS Biol 14: e1002539. doi: 10.1371/journal.pbio.1002539 27552662

45. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92: 253–263. doi: 10.1016/s0092-8674(00)80919-8 9458049

46. Casci T, Vinos J, Freeman M (1999) Sprouty, an intracellular inhibitor of Ras signaling. Cell 96: 655–665. doi: 10.1016/s0092-8674(00)80576-0 10089881

47. Karim FD, Rubin GM (1999) PTP-ER, a novel tyrosine phosphatase, functions downstream of Ras1 to downregulate MAP kinase during Drosophila eye development. Mol Cell 3: 741–750. doi: 10.1016/s1097-2765(01)80006-x 10394362

48. Roskoski R Jr. (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79: 34–74. doi: 10.1016/j.phrs.2013.11.002 24269963

49. Brumby AM, Richardson HE (2003) scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. Embo J 22: 5769–5779. doi: 10.1093/emboj/cdg548 14592975

50. Wu M, Pastor-Pareja JC, Xu T (2010) Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463: 545–548. doi: 10.1038/nature08702 20072127

51. Stickel S, Su TT (2014) Oncogenic mutations produce similar phenotypes in Drosophila tissues of diverse origins. Biol Open 3: 201–209. doi: 10.1242/bio.20147161 24570398

52. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G (2015) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 21: 805–821. doi: 10.1016/j.cmet.2015.05.014 26039447

53. Lee JV, Carrer A, Shah S, Snyder NW, Wei S, et al. (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20: 306–319. doi: 10.1016/j.cmet.2014.06.004 24998913

54. Yi CH, Pan H, Seebacher J, Jang IH, Hyberts SG, et al. (2011) Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 146: 607–620. doi: 10.1016/j.cell.2011.06.050 21854985

55. Hong H, Cai Y, Zhang S, Ding H, Wang H, et al. (2017) Molecular Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB. Structure 25: 641–649 e643. doi: 10.1016/j.str.2017.03.003 28380339

56. Neri L, Lasa M, Elosegui-Artola A, D'Avola D, Carte B, et al. (2017) NatB-mediated protein N-alpha-terminal acetylation is a potential therapeutic target in hepatocellular carcinoma. Oncotarget 8: 40967–40981. doi: 10.18632/oncotarget.17332 28498797

57. Yarden Y, Pines G (2012) The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 12: 553–563. doi: 10.1038/nrc3309 22785351

58. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, et al. (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4: 1920–1932. doi: 10.1074/mcp.M500279-MCP200 16127175

59. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11: 761–774. doi: 10.1038/nrc3106 21993244

60. Lavoie H, Therrien M (2015) Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16: 281–298. doi: 10.1038/nrm3979 25907612

61. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117: 1223–1237. 8404527

62. Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24: 251–254. doi: 10.1016/s0166-2236(00)01791-4 11311363

63. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415. 8223268

64. Bosch JA, Tran NH, Hariharan IK (2015) CoinFLP: a system for efficient mosaic screening and for visualizing clonal boundaries in Drosophila. Development 142: 597–606. doi: 10.1242/dev.114603 25605786

65. Ni JQ, Markstein M, Binari R, Pfeiffer B, Liu LP, et al. (2008) Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods 5: 49–51. doi: 10.1038/nmeth1146 18084299

66. Liao Y, Du W (2018) An Rb family-independent E2F3 transcription factor variant impairs STAT5 signaling and mammary gland remodeling during pregnancy in mice. J Biol Chem 293: 3156–3167. doi: 10.1074/jbc.RA117.000583 29330306

Článek vyšel v časopise

PLOS Genetics

2020 Číslo 6
Nejčtenější tento týden
Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se