#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The brachyceran de novo gene PIP82, a phosphorylation target of aPKC, is essential for proper formation and maintenance of the rhabdomeric photoreceptor apical domain in Drosophila


Autoři: Andrew C. Zelhof aff001;  Simpla Mahato aff001;  Xulong Liang aff001;  Jonathan Rylee aff001;  Emma Bergh aff001;  Lauren E. Feder aff001;  Matthew E. Larsen aff002;  Steven G. Britt aff002;  Markus Friedrich aff003
Působiště autorů: Department of Biology, Indiana University, Bloomington, Indiana, United States of America aff001;  Department of Neurology and Ophthalmology, Dell Medical School, University of Texas, Austin, Texas, United States of America aff002;  Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America aff003
Vyšlo v časopise: The brachyceran de novo gene PIP82, a phosphorylation target of aPKC, is essential for proper formation and maintenance of the rhabdomeric photoreceptor apical domain in Drosophila. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008890
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008890

Souhrn

The Drosophila apical photoreceptor membrane is defined by the presence of two distinct morphological regions, the microvilli-based rhabdomere and the stalk membrane. The subdivision of the apical membrane contributes to the geometrical positioning and the stereotypical morphology of the rhabdomeres in compound eyes with open rhabdoms and neural superposition. Here we describe the characterization of the photoreceptor specific protein PIP82. We found that PIP82’s subcellular localization demarcates the rhabdomeric portion of the apical membrane. We further demonstrate that PIP82 is a phosphorylation target of aPKC. PIP82 localization is modulated by phosphorylation, and in vivo, the loss of the aPKC/Crumbs complex results in an expansion of the PIP82 localization domain. The absence of PIP82 in photoreceptors leads to misshapped rhabdomeres as a result of misdirected cellular trafficking of rhabdomere proteins. Comparative analyses reveal that PIP82 originated de novo in the lineage leading to brachyceran Diptera, which is also characterized by the transition from fused to open rhabdoms. Taken together, these findings define a novel factor that delineates and maintains a specific apical membrane domain, and offers new insights into the functional organization and evolutionary history of the Drosophila retina.

Klíčová slova:

Diptera – Drosophila melanogaster – Eyes – Light – Phosphorylation – Photoreceptors – Phototransduction – Retina


Zdroje

1. Land MF, Nilsson DE. Animal Eyes: Oxford University Press; 2002.

2. Braitenberg V. Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res. 1967;3(3):271–98. doi: 10.1007/BF00235589 6030825.

3. Greiner B. Adaptations for nocturnal vision in insect apposition eyes. Int Rev Cytol. 2006;250:1–46. Epub 2006/07/25. doi: 10.1016/S0074-7696(06)50001-4 16861062.

4. Kirschfeld K. [The projection of the optical environment on the screen of the rhabdomere in the compound eye of the Musca]. Exp Brain Res. 1967;3(3):248–70. doi: 10.1007/BF00235588 6067693.

5. Land MF. The optical structures of animal eyes. Curr Biol. 2005;15(9):R319–23. Epub 2005/05/17. S0960-9822(05)00441-0 [pii] doi: 10.1016/j.cub.2005.04.041 15893273.

6. Shaw SR. Optics of arthropod compound eye. Science. 1969;165(3888):88–90. Epub 1969/07/04. doi: 10.1126/science.165.3888.88 17840700.

7. Agi E, Langen M, Altschuler SJ, Wu LF, Zimmermann T, Hiesinger PR. The evolution and development of neural superposition. J Neurogenet. 2014;28(3–4):216–32. Epub 2014/06/11. doi: 10.3109/01677063.2014.922557 24912630.

8. Osorio D. Spam and the evolution of the fly’s eye. Bioessays. 2007;29(2):111–5. Epub 2007/01/18. doi: 10.1002/bies.20533 17226795.

9. Langen M, Agi E, Altschuler DJ, Wu LF, Altschuler SJ, Hiesinger PR. The Developmental Rules of Neural Superposition in Drosophila. Cell. 2015;162(1):120–33. Epub 2015/06/30. doi: 10.1016/j.cell.2015.05.055 26119341.

10. Schwabe T, Borycz JA, Meinertzhagen IA, Clandinin TR. Differential adhesion determines the organization of synaptic fascicles in the Drosophila visual system. Curr Biol. 2014;24(12):1304–13. Epub 2014/06/03. doi: 10.1016/j.cub.2014.04.047 24881879.

11. Schwabe T, Neuert H, Clandinin TR. A network of cadherin-mediated interactions polarizes growth cones to determine targeting specificity. Cell. 2013;154(2):351–64. Epub 2013/07/23. doi: 10.1016/j.cell.2013.06.011 23870124.

12. Gurudev N, Yuan M, Knust E. chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells. Biology open. 2014;3(5):332–41. Epub 2014/04/08. doi: 10.1242/bio.20147310 24705015.

13. Husain N, Pellikka M, Hong H, Klimentova T, Choe KM, Clandinin TR, et al. The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev Cell. 2006;11(4):483–93. Epub 2006/10/03. S1534-5807(06)00358-3 [pii] doi: 10.1016/j.devcel.2006.08.012 17011488.

14. Nie J, Mahato S, Mustill W, Tipping C, Bhattacharya SS, Zelhof AC. Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Developmental biology. 2012;371(2):312–20. Epub 2012/09/11. doi: 10.1016/j.ydbio.2012.08.024 22960282.

15. Nie J, Mahato S, Zelhof AC. The actomyosin machinery is required for Drosophila retinal lumen formation. PLoS Genet. 2014;10(9):e1004608. Epub 2014/09/19. doi: 10.1371/journal.pgen.1004608 25233220.

16. Zelhof AC, Hardy RW, Becker A, Zuker CS. Transforming the architecture of compound eyes. Nature. 2006;443(7112):696–9. Epub 2006/10/13. doi: 10.1038/nature05128 17036004.

17. Mahato S, Nie J, Plachetzki DC, Zelhof AC. A mosaic of independent innovations involving eyes shut are critical for the evolutionary transition from fused to open rhabdoms. Dev Biol. 2018;443(2):188–202. Epub 2018/09/24. doi: 10.1016/j.ydbio.2018.09.016 30243673.

18. Suri V, Qian Z, Hall JC, Rosbash M. Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron. 1998;21(1):225–34. Epub 1998/08/11. S0896-6273(00)80529-2 [pii]. doi: 10.1016/s0896-6273(00)80529-2 9697866.

19. Bernardo-Garcia FJ, Syed M, Jekely G, Sprecher SG. Glass confers rhabdomeric photoreceptor identity in Drosophila, but not across all metazoans. Evodevo. 2019;10:4. Epub 2019/03/16. doi: 10.1186/s13227-019-0117-6 30873275.

20. Friedrich M, Cook T, Zelhof AC. Ancient default activators of terminal photoreceptor differentiation in the pancrustacean compound eye: the homeodomain transcription factors Otd and Pph13. Current Opinion in Insect Science. 2016;13:33–42. http://dx.doi.org/10.1016/j.cois.2015.10.006. 27436551

21. Mahato S, Morita S, Tucker AE, Liang X, Jackowska M, Friedrich M, et al. Common transcriptional mechanisms for visual photoreceptor cell differentiation among Pancrustaceans. PLoS Genet. 2014;10(7):e1004484. Epub 2014/07/06. doi: 10.1371/journal.pgen.1004484 24991928.

22. Izaddoost S, Nam SC, Bhat MA, Bellen HJ, Choi KW. Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature. 2002;416(6877):178–83. Epub 2002/02/19. doi: 10.1038/nature720 11850624.

23. Pellikka M, Tanentzapf G, Pinto M, Smith C, McGlade CJ, Ready DF, et al. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature. 2002;416(6877):143–9. Epub 2002/02/19. doi: 10.1038/nature721 11850625.

24. Mishra M, Oke A, Lebel C, McDonald EC, Plummer Z, Cook TA, et al. Pph13 and orthodenticle define a dual regulatory pathway for photoreceptor cell morphogenesis and function. Development. 2010;137(17):2895–904. Epub 2010/07/30. doi: 10.1242/dev.051722 20667913.

25. Liang X, Mahato S, Hemmerich C, Zelhof AC. Two temporal functions of Glass: Ommatidium patterning and photoreceptor differentiation. Dev Biol. 2016. doi: 10.1016/j.ydbio.2016.04.012 27105580.

26. Morrison CA, Chen H, Cook T, Brown S, Treisman JE. Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye. PLoS Genet. 2018;14(1):e1007173. Epub 2018/01/13. doi: 10.1371/journal.pgen.1007173 29324767.

27. Bernardo-Garcia FJ, Fritsch C, Sprecher SG. The transcription factor Glass links eye field specification with photoreceptor differentiation in Drosophila. Development. 2016;143(8):1413–23. Epub 2016/03/10. doi: 10.1242/dev.128801 26952983.

28. Zelhof AC, Koundakjian E, Scully AL, Hardy RW, Pounds L. Mutation of the photoreceptor specific homeodomain gene Pph13 results in defects in phototransduction and rhabdomere morphogenesis. Development. 2003;130(18):4383–92. Epub 2003/08/06. doi: 10.1242/dev.00651 12900454.

29. mod EC, Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 2010;330(6012):1787–97. Epub 2010/12/24. doi: 10.1126/science.1198374 21177974.

30. Bernardo-Garcia FJ, Humberg TH, Fritsch C, Sprecher SG. Successive requirement of Glass and Hazy for photoreceptor specification and maintenance in Drosophila. Fly. 2017;11(2):112–20. Epub 2016/10/30. doi: 10.1080/19336934.2016.1244591 27723419.

31. Bailey MJ, Prehoda KE. Establishment of Par-Polarized Cortical Domains via Phosphoregulated Membrane Motifs. Dev Cell. 2015;35(2):199–210. Epub 2015/10/21. doi: 10.1016/j.devcel.2015.09.016 26481050.

32. Djiane A, Yogev S, Mlodzik M. The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell. 2005;121(4):621–31. Epub 2005/05/24. doi: 10.1016/j.cell.2005.03.014 15907474.

33. Nunes de Almeida F, Walther RF, Presse MT, Vlassaks E, Pichaud F. Cdc42 defines apical identity and regulates epithelial morphogenesis by promoting apical recruitment of Par6-aPKC and Crumbs. Development. 2019;146(15). Epub 2019/08/14. doi: 10.1242/dev.175497 31405903.

34. Flores-Benitez D, Knust E. Dynamics of epithelial cell polarity in Drosophila: how to regulate the regulators? Curr Opin Cell Biol. 2016;42:13–21. Epub 2016/04/17. doi: 10.1016/j.ceb.2016.03.018 27085003.

35. Hong Y, Ackerman L, Jan LY, Jan YN. Distinct roles of Bazooka and Stardust in the specification of Drosophila photoreceptor membrane architecture. Proc Natl Acad Sci U S A. 2003;100(22):12712–7. Epub 2003/10/22. doi: 10.1073/pnas.2135347100 14569003.

36. Muschalik N, Knust E. Increased levels of the cytoplasmic domain of Crumbs repolarise developing Drosophila photoreceptors. J Cell Sci. 2011;124(Pt 21):3715–25. Epub 2011/10/26. doi: 10.1242/jcs.091223 22025631.

37. Nam SC, Choi KW. Interaction of Par-6 and Crumbs complexes is essential for photoreceptor morphogenesis in Drosophila. Development. 2003;130(18):4363–72. Epub 2003/08/06. doi: 10.1242/dev.00648 12900452.

38. Pichaud F. PAR-Complex and Crumbs Function During Photoreceptor Morphogenesis and Retinal Degeneration. Front Cell Neurosci. 2018;12:90. Epub 2018/04/14. doi: 10.3389/fncel.2018.00090 29651238.

39. Walther RF, Pichaud F. Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr Biol. 2010;20(12):1065–74. Epub 2010/05/25. doi: 10.1016/j.cub.2010.04.049 20493700.

40. Johnson K, Grawe F, Grzeschik N, Knust E. Drosophila crumbs is required to inhibit light-induced photoreceptor degeneration. Curr Biol. 2002;12(19):1675–80. Epub 2002/10/04. S0960982202011806 [pii]. doi: 10.1016/s0960-9822(02)01180-6 12361571.

41. Kumar JP, Ready DF. Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development. 1995;121(12):4359–70. 8575336

42. Zelhof AC, Hardy RW. WASp is required for the correct temporal morphogenesis of rhabdomere microvilli. J Cell Biol. 2004;164(3):417–26. doi: 10.1083/jcb.200307048 14744998.

43. Xia H, Ready DF. Ectoplasm, ghost in the R cell machine? Dev Neurobiol. 2011;71(12):1246–57. Epub 2011/05/05. doi: 10.1002/dneu.20898 21542135.

44. Schopf K, Huber A. Membrane protein trafficking in Drosophila photoreceptor cells. Eur J Cell Biol. 2017;96(5):391–401. Epub 2016/12/15. doi: 10.1016/j.ejcb.2016.11.002 27964885.

45. Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch. 2007;454(5):821–47. Epub 2007/05/10. doi: 10.1007/s00424-007-0251-1 17487503.

46. Li BX, Satoh AK, Ready DF. Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J Cell Biol. 2007;177(4):659–69. Epub 2007/05/23. jcb.200610157 [pii] doi: 10.1083/jcb.200610157 17517962.

47. Schopf K, Smylla TK, Huber A. Immunocytochemical Labeling of Rhabdomeric Proteins in Drosophila Photoreceptor Cells Is Compromised by a Light-dependent Technical Artifact. J Histochem Cytochem. 2019;67(10):745–57. Epub 2019/06/28. doi: 10.1369/0022155419859870 31246149.

48. Land MF. Variations in the Structure and Design of Compound Eyes. In: Stravenga DG, Hardie RC, editors. Facets of Vision. Berlin Heidelberg New York: Springer-Verlag; 1989. p. 90–111.

49. Land MF. Visual acuity in insects. Annu Rev Entomol. 1997;42:147–77. doi: 10.1146/annurev.ento.42.1.147 15012311.

50. Wernet MF, Perry MW, Desplan C. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. Trends Genet. 2015;31(6):316–28. doi: 10.1016/j.tig.2015.04.006 26025917.

51. Hahn MW, Han MV, Han SG. Gene family evolution across 12 Drosophila genomes. PLoS Genet. 2007;3(11):e197. Epub 2007/11/14. doi: 10.1371/journal.pgen.0030197 17997610.

52. Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, et al. Functional genomics of the stable fly, Stomoxys calcitrans, reveals mechanisms underlying reproduction, host interactions, and novel targets for pest control. 2019:623009. doi: 10.1101/623009 %J bioRxiv

53. Papanicolaou A, Schetelig MF, Arensburger P, Atkinson PW, Benoit JB, Bourtzis K, et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 2016;17(1):192. Epub 2016/09/24. doi: 10.1186/s13059-016-1049-2 27659211.

54. Dikow RB, Frandsen PB, Turcatel M, Dikow T. Genomic and transcriptomic resources for assassin flies including the complete genome sequence of Proctacanthus coquilletti (Insecta: Diptera: Asilidae) and 16 representative transcriptomes. PeerJ. 2017;5:e2951. Epub 2017/02/09. doi: 10.7717/peerj.2951 28168115.

55. Godenschwege TA, Kristiansen LV, Uthaman SB, Hortsch M, Murphey RK. A conserved role for Drosophila Neuroglian and human L1-CAM in central-synapse formation. Curr Biol. 2006;16(1):12–23. Epub 2006/01/13. doi: 10.1016/j.cub.2005.11.062 16401420.

56. Kristiansen LV, Velasquez E, Romani S, Baars S, Berezin V, Bock E, et al. Genetic analysis of an overlapping functional requirement for L1- and NCAM-type proteins during sensory axon guidance in Drosophila. Mol Cell Neurosci. 2005;28(1):141–52. Epub 2004/12/21. doi: 10.1016/j.mcn.2004.09.003 15607949.

57. Islam R, Wei SY, Chiu WH, Hortsch M, Hsu JC. Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway. Development. 2003;130(10):2051–9. Epub 2003/04/02. doi: 10.1242/dev.00415 12668620.

58. Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134(1):25–36. Epub 2008/07/11. doi: 10.1016/j.cell.2008.06.030 18614008.

59. Hoekstra HE, Coyne JA. The locus of evolution: evo devo and the genetics of adaptation. Evolution. 2007;61(5):995–1016. Epub 2007/05/12. doi: 10.1111/j.1558-5646.2007.00105.x 17492956.

60. Stern DL, Orgogozo V. The loci of evolution: how predictable is genetic evolution? Evolution. 2008;62(9):2155–77. Epub 2008/07/12. doi: 10.1111/j.1558-5646.2008.00450.x 18616572.

61. Schlotterer C. Genes from scratch—the evolutionary fate of de novo genes. Trends Genet. 2015;31(4):215–9. Epub 2015/03/17. doi: 10.1016/j.tig.2015.02.007 25773713.

62. McLysaght A, Hurst LD. Open questions in the study of de novo genes: what, how and why. Nat Rev Genet. 2016;17(9):567–78. Epub 2016/07/28. doi: 10.1038/nrg.2016.78 27452112.

63. Tautz D, Domazet-Loso T. The evolutionary origin of orphan genes. Nat Rev Genet. 2011;12(10):692–702. Epub 2011/09/01. doi: 10.1038/nrg3053 21878963.

64. Wu DD, Zhang YP. Evolution and function of de novo originated genes. Mol Phylogenet Evol. 2013;67(2):541–5. Epub 2013/03/05. doi: 10.1016/j.ympev.2013.02.013 23454495.

65. Liu Z, Friedrich M. The Tribolium homologue of glass and the evolution of insect larval eyes. Developmental biology. 2004;269(1):36–54. Epub 2004/04/15. doi: 10.1016/j.ydbio.2004.01.012 15081356.

66. Koushika SP, Lisbin MJ, White K. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform. Current biology: CB. 1996;6(12):1634–41. Epub 1996/12/01. doi: 10.1016/s0960-9822(02)70787-2 8994828.

67. Brammer JD. The ultrastructure of the compound eye of a mosquito Aedes aegypti L. 1970;175(2):181–95. doi: 10.1002/jez.1401750207

68. Eguchi E, Naka KI, Kuwabara M. The development of the rhabdom and the appearance of the electrical response in the insect eye. J Gen Physiol. 1962;46:143–57. Epub 1962/09/01. doi: 10.1085/jgp.46.1.143 13889473.

69. Liu H, Deng S, Zhao X, Cao F, Lu Y. Structure and photoreception mechanism of the compound eye of Bactrocera dorsalis Hendel. Journal of South China Agricultural University. 2017;38(2):75–80.

70. Meyer-Rochow VB. Electrophysiology and histology of the eye of the bumblebee Bombus hortorum (L.) (Hymenoptera: Apidae). Journal of the Royal Society of New Zealand. 1981;11(2):123–53. doi: 10.1080/03036758.1981.10419447

71. Wang CH, Hsu SJ. The compound eye of the Diamondback Moth, Plutella xylotella (L.) and its pigment migration. Bull Inst Zool Acad Sinica. 1982;21(1):75–92.

72. Clandinin TR, Lee CH, Herman T, Lee RC, Yang AY, Ovasapyan S, et al. Drosophila LAR regulates R1-R6 and R7 target specificity in the visual system. Neuron. 2001;32(2):237–48. Epub 2001/10/31. doi: 10.1016/s0896-6273(01)00474-3 11683994.

73. Richard M, Grawe F, Knust E. DPATJ plays a role in retinal morphogenesis and protects against light-dependent degeneration of photoreceptor cells in the Drosophila eye. Dev Dyn. 2006;235(4):895–907. Epub 2005/10/26. doi: 10.1002/dvdy.20595 16245332.

74. Nie J, Mahato S, Zelhof AC. Imaging the Drosophila retina: zwitterionic buffers PIPES and HEPES induce morphological artifacts in tissue fixation. BMC Dev Biol. 2015;15:10. doi: 10.1186/s12861-015-0056-y 25645690.

75. Walton J. Lead aspartate, an en bloc contrast stain particularly useful for ultrastructural enzymology. J Histochem Cytochem. 1979;27(10):1337–42. Epub 1979/10/01. doi: 10.1177/27.10.512319 512319.

76. Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 1999;22(3):451–61. doi: 10.1016/s0896-6273(00)80701-1 10197526

77. Zheng L, Farrell DM, Fulton RM, Bagg EE, Salcedo E, Manino M, et al. Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning. The Journal of biological chemistry. 2015;290(36):21951–61. Epub 2015/07/22. doi: 10.1074/jbc.M115.677765 26195627.

78. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. Epub 1990/10/05. doi: 10.1016/S0022-2836(05)80360-2 2231712.

79. Wall DP, Fraser HB, Hirsh AE. Detecting putative orthologs. Bioinformatics. 2003;19(13):1710–1. Epub 2004/12/14. doi: 10.1093/bioinformatics/btg213 15593400.

80. Taly JF, Magis C, Bussotti G, Chang JM, Di Tommaso P, Erb I, et al. Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nat Protoc. 2011;6(11):1669–82. Epub 2011/10/08. doi: 10.1038/nprot.2011.393 21979275.

81. Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C, et al. Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A. 2011;108(14):5690–5. Epub 2011/03/16. doi: 10.1073/pnas.1012675108 21402926.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 6
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Hypertenze a hypercholesterolémie – synergický efekt léčby
nový kurz
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Úloha kombinovaných preparátů v léčbě arteriální hypertenze
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Halitóza
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Terapie roztroušené sklerózy v kostce
Autoři: MUDr. Dominika Šťastná, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#