Independent validation of experimental results requires timely and unrestricted access to animal models and reagents
								
									Autoři:
											Cassandra R. Diegel						aff001; 											Steven Hann						aff002; 											Ugur M. Ayturk						aff002; 											Jennifer C. W. Hu						aff002; 											Kyung-eun Lim						aff004; 											Casey J. Droscha						aff001; 											Zachary B. Madaj						aff005; 											Gabrielle E. Foxa						aff001; 											Isaac Izaguirre						aff001; 																	aff006; 											Alexander G. Robling						aff004; 											Matthew L. Warman						aff002; 											Bart O. Williams						aff001										
				
									Působiště autorů:
											Program in Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, Michigan, United States of America
						aff001; 											Orthopedic Research Labs, Boston Children’s Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
						aff002; 											Musculoskeletal Integrity Program, Hospital for Special Surgery Research Institute, New York, New York, United States of America
						aff003; 											Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
						aff004; 											Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan, United States of America
						aff005; 											Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, Michigan, United States of America
						aff006										
				
									Vyšlo v časopise:
					Independent validation of experimental results requires timely and unrestricted access to animal models and reagents. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008940
					
				
									Kategorie:
					Formal Comment
					
				
									doi:
					
						https://doi.org/10.1371/journal.pgen.1008940
					
							
Zdroje
1. Diegel CR, Hann S, Ayturk UM, Hu JCW, Lim KE, et al. (2020) An osteocalcin-deficient mouse strain without endocrine abnormalities. PLoS Genet 16: e1008361. doi: 10.1371/journal.pgen.1008361 32463812
2. Ducy P, Desbois C, Boyce B, Pinero G, Story B, et al. (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382 : 448–452. doi: 10.1038/382448a0 8684484
3. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, et al. (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130 : 456–469. doi: 10.1016/j.cell.2007.05.047 17693256
4. Oury F, Sumara G, Sumara O, Ferron M, Chang H, et al. (2011) Endocrine regulation of male fertility by the skeleton. Cell 144 : 796–809. doi: 10.1016/j.cell.2011.02.004 21333348
5. Moriishi T, Ozasa R, Ishimoto T, Nakano T, Hasegawa T, et al. (2020) Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet 16: e1008586. doi: 10.1371/journal.pgen.1008586 32463816
6. Lambert LJ, Challa AK, Niu A, Zhou L, Tucholski J, et al. (2016) Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis Model Mech 9 : 1169–1179. doi: 10.1242/dmm.025247 27483347
7. Fowlkes JL, Clay Bunn R, Kalaitzoglou E, Ray P, Popescu I, et al. (2020) Postnatal loss of the insulin receptor in osteoprogenitor cells does not impart a metabolic phenotype. Sci Rep 10 : 8842. doi: 10.1038/s41598-020-65717-3 32483283
8. von Herrath M, Pagni PP, Grove K, Christoffersson G, Tang-Christensen M, et al. (2019) Case Reports of Pre-clinical Replication Studies in Metabolism and Diabetes. Cell Metab 29 : 795–802. doi: 10.1016/j.cmet.2019.02.004 30879984
9. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, et al. (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135 : 825–837. doi: 10.1016/j.cell.2008.09.059 19041748
10. Kode A, Obri A, Paone R, Kousteni S, Ducy P, et al. (2014) Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nat Med 20 : 1228–1229. doi: 10.1038/nm.3698 25375916
11. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, et al. (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17 : 684–691. doi: 10.1038/nm.2388 21602802
12. Cui Y, Niziolek PJ, MacDonald BT, Alenina N, Matthes S, et al. (2014) Reply to Lrp5 regulation of bone mass and gut serotonin synthesis. Nat Med 20 : 1229–1230. doi: 10.1038/nm.3697 25375917
13. Lee GS, Simpson C, Sun BH, Yao C, Foer D, et al. (2014) Measurement of plasma, serum, and platelet serotonin in individuals with high bone mass and mutations in LRP5. J Bone Miner Res 29 : 976–981. doi: 10.1002/jbmr.2086 24038240
14. National Academies of Sciences Engineering and Medicine (U.S.). Committee on Responsible Science, Committee on Science Engineering Medicine and Public Policy (U.S.) (2017) Fostering integrity in research. 1 online resource (1 PDF file (xv, 307 pages)) p.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 6
- Vakcinace proti hepatitidě A se nejvíc zanedbala u osob s onemocněním jater
- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Může AI vyřešit nedostatek zdravotníků v Evropě?
- AI hledá nová antibiotika ve zvířecích jedech
- Vakcíny proti karcinomu pankreatu – nová naděje v onkologii
Nejčtenější v tomto čísle
- Osteocalcin promotes bone mineralization but is not a hormone
- Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis
- Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzVšechny kurzy